svhn.py 4.69 KB
Newer Older
1
from .vision import VisionDataset
2
3
4
5
from PIL import Image
import os
import os.path
import numpy as np
6
from typing import Any, Callable, Optional, Tuple
7
from .utils import download_url, check_integrity, verify_str_arg
8

soumith's avatar
soumith committed
9

10
class SVHN(VisionDataset):
11
    """`SVHN <http://ufldl.stanford.edu/housenumbers/>`_ Dataset.
12
13
14
    Note: The SVHN dataset assigns the label `10` to the digit `0`. However, in this Dataset,
    we assign the label `0` to the digit `0` to be compatible with PyTorch loss functions which
    expect the class labels to be in the range `[0, C-1]`
15

16
17
18
19
    .. warning::

        This class needs `scipy <https://docs.scipy.org/doc/>`_ to load data from `.mat` format.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
    Args:
        root (string): Root directory of dataset where directory
            ``SVHN`` exists.
        split (string): One of {'train', 'test', 'extra'}.
            Accordingly dataset is selected. 'extra' is Extra training set.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """
34
35
36
37
38
39
40
41
42

    split_list = {
        'train': ["http://ufldl.stanford.edu/housenumbers/train_32x32.mat",
                  "train_32x32.mat", "e26dedcc434d2e4c54c9b2d4a06d8373"],
        'test': ["http://ufldl.stanford.edu/housenumbers/test_32x32.mat",
                 "test_32x32.mat", "eb5a983be6a315427106f1b164d9cef3"],
        'extra': ["http://ufldl.stanford.edu/housenumbers/extra_32x32.mat",
                  "extra_32x32.mat", "a93ce644f1a588dc4d68dda5feec44a7"]}

43
44
45
46
47
48
49
50
    def __init__(
            self,
            root: str,
            split: str = "train",
            transform: Optional[Callable] = None,
            target_transform: Optional[Callable] = None,
            download: bool = False,
    ) -> None:
51
52
        super(SVHN, self).__init__(root, transform=transform,
                                   target_transform=target_transform)
53
        self.split = verify_str_arg(split, "split", tuple(self.split_list.keys()))
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
        self.url = self.split_list[split][0]
        self.filename = self.split_list[split][1]
        self.file_md5 = self.split_list[split][2]

        if download:
            self.download()

        if not self._check_integrity():
            raise RuntimeError('Dataset not found or corrupted.' +
                               ' You can use download=True to download it')

        # import here rather than at top of file because this is
        # an optional dependency for torchvision
        import scipy.io as sio

        # reading(loading) mat file as array
moskomule's avatar
moskomule committed
70
        loaded_mat = sio.loadmat(os.path.join(self.root, self.filename))
71
72

        self.data = loaded_mat['X']
73
        # loading from the .mat file gives an np array of type np.uint8
vabh's avatar
vabh committed
74
        # converting to np.int64, so that we have a LongTensor after
75
76
77
        # the conversion from the numpy array
        # the squeeze is needed to obtain a 1D tensor
        self.labels = loaded_mat['y'].astype(np.int64).squeeze()
vabh's avatar
vabh committed
78

79
        # the svhn dataset assigns the class label "10" to the digit 0
vabh's avatar
vabh committed
80
        # this makes it inconsistent with several loss functions
81
        # which expect the class labels to be in the range [0, C-1]
vabh's avatar
vabh committed
82
        np.place(self.labels, self.labels == 10, 0)
83
84
        self.data = np.transpose(self.data, (3, 2, 0, 1))

85
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
86
87
88
89
90
91
92
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
93
        img, target = self.data[index], int(self.labels[index])
94
95
96
97
98
99
100
101
102
103
104
105
106

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(np.transpose(img, (1, 2, 0)))

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

107
    def __len__(self) -> int:
108
109
        return len(self.data)

110
    def _check_integrity(self) -> bool:
111
112
113
        root = self.root
        md5 = self.split_list[self.split][2]
        fpath = os.path.join(root, self.filename)
soumith's avatar
soumith committed
114
        return check_integrity(fpath, md5)
115

116
    def download(self) -> None:
soumith's avatar
soumith committed
117
118
        md5 = self.split_list[self.split][2]
        download_url(self.url, self.root, self.filename, md5)
119

120
    def extra_repr(self) -> str:
121
        return "Split: {split}".format(**self.__dict__)