presets.py 1.35 KB
Newer Older
1
2
import torch

3
4
5
6
import transforms as T


class DetectionPresetTrain:
7
8
9
10
    def __init__(self, data_augmentation, hflip_prob=0.5, mean=(123., 117., 104.)):
        if data_augmentation == 'hflip':
            self.transforms = T.Compose([
                T.RandomHorizontalFlip(p=hflip_prob),
11
12
                T.PILToTensor(),
                T.ConvertImageDtype(torch.float),
13
14
15
16
17
18
19
            ])
        elif data_augmentation == 'ssd':
            self.transforms = T.Compose([
                T.RandomPhotometricDistort(),
                T.RandomZoomOut(fill=list(mean)),
                T.RandomIoUCrop(),
                T.RandomHorizontalFlip(p=hflip_prob),
20
21
                T.PILToTensor(),
                T.ConvertImageDtype(torch.float),
22
            ])
23
24
25
26
        elif data_augmentation == 'ssdlite':
            self.transforms = T.Compose([
                T.RandomIoUCrop(),
                T.RandomHorizontalFlip(p=hflip_prob),
27
28
                T.PILToTensor(),
                T.ConvertImageDtype(torch.float),
29
            ])
30
31
        else:
            raise ValueError(f'Unknown data augmentation policy "{data_augmentation}"')
32
33
34
35
36
37
38
39
40
41
42

    def __call__(self, img, target):
        return self.transforms(img, target)


class DetectionPresetEval:
    def __init__(self):
        self.transforms = T.ToTensor()

    def __call__(self, img, target):
        return self.transforms(img, target)