"vscode:/vscode.git/clone" did not exist on "32e00bf3938a472c87d84012a68dc76b79850303"
poolers.py 8.83 KB
Newer Older
1
2
3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import torch.nn.functional as F
eellison's avatar
eellison committed
4
from torch import nn, Tensor
5
6
7
8

from torchvision.ops import roi_align
from torchvision.ops.boxes import box_area

eellison's avatar
eellison committed
9
10
from torch.jit.annotations import Optional, List, Dict, Tuple
import torchvision
11

Francisco Massa's avatar
Francisco Massa committed
12

13
14
15
16
# copying result_idx_in_level to a specific index in result[]
# is not supported by ONNX tracing yet.
# _onnx_merge_levels() is an implementation supported by ONNX
# that merges the levels to the right indices
eellison's avatar
eellison committed
17
@torch.jit.unused
18
def _onnx_merge_levels(levels, unmerged_results):
eellison's avatar
eellison committed
19
    # type: (Tensor, List[Tensor]) -> Tensor
20
21
22
23
24
    first_result = unmerged_results[0]
    dtype, device = first_result.dtype, first_result.device
    res = torch.zeros((levels.size(0), first_result.size(1),
                       first_result.size(2), first_result.size(3)),
                      dtype=dtype, device=device)
Francisco Massa's avatar
Francisco Massa committed
25
26
    for level in range(len(unmerged_results)):
        index = (levels == level).nonzero().view(-1, 1, 1, 1)
27
        index = index.expand(index.size(0),
Francisco Massa's avatar
Francisco Massa committed
28
29
30
31
                             unmerged_results[level].size(1),
                             unmerged_results[level].size(2),
                             unmerged_results[level].size(3))
        res = res.scatter(0, index, unmerged_results[level])
32
33
34
    return res


eellison's avatar
eellison committed
35
36
# TODO: (eellison) T54974082 https://github.com/pytorch/pytorch/issues/26744/pytorch/issues/26744
def initLevelMapper(k_min, k_max, canonical_scale=224, canonical_level=4, eps=1e-6):
37
    # type: (int, int, int, int, float) -> LevelMapper
eellison's avatar
eellison committed
38
39
40
41
    return LevelMapper(k_min, k_max, canonical_scale, canonical_level, eps)


@torch.jit.script
42
43
44
class LevelMapper(object):
    """Determine which FPN level each RoI in a set of RoIs should map to based
    on the heuristic in the FPN paper.
45
46
47
48
49
50
51

    Arguments:
        k_min (int)
        k_max (int)
        canonical_scale (int)
        canonical_level (int)
        eps (float)
52
53
54
    """

    def __init__(self, k_min, k_max, canonical_scale=224, canonical_level=4, eps=1e-6):
55
        # type: (int, int, int, int, float) -> None
56
57
58
59
60
61
62
        self.k_min = k_min
        self.k_max = k_max
        self.s0 = canonical_scale
        self.lvl0 = canonical_level
        self.eps = eps

    def __call__(self, boxlists):
63
        # type: (List[Tensor]) -> Tensor
64
65
66
67
68
69
70
71
        """
        Arguments:
            boxlists (list[BoxList])
        """
        # Compute level ids
        s = torch.sqrt(torch.cat([box_area(boxlist) for boxlist in boxlists]))

        # Eqn.(1) in FPN paper
72
        target_lvls = torch.floor(self.lvl0 + torch.log2(s / self.s0) + torch.tensor(self.eps, dtype=s.dtype))
73
        target_lvls = torch.clamp(target_lvls, min=self.k_min, max=self.k_max)
74
        return (target_lvls.to(torch.int64) - self.k_min).to(torch.int64)
75
76
77
78


class MultiScaleRoIAlign(nn.Module):
    """
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    Multi-scale RoIAlign pooling, which is useful for detection with or without FPN.

    It infers the scale of the pooling via the heuristics present in the FPN paper.

    Arguments:
        featmap_names (List[str]): the names of the feature maps that will be used
            for the pooling.
        output_size (List[Tuple[int, int]] or List[int]): output size for the pooled region
        sampling_ratio (int): sampling ratio for ROIAlign

    Examples::

        >>> m = torchvision.ops.MultiScaleRoIAlign(['feat1', 'feat3'], 3, 2)
        >>> i = OrderedDict()
        >>> i['feat1'] = torch.rand(1, 5, 64, 64)
        >>> i['feat2'] = torch.rand(1, 5, 32, 32)  # this feature won't be used in the pooling
        >>> i['feat3'] = torch.rand(1, 5, 16, 16)
        >>> # create some random bounding boxes
        >>> boxes = torch.rand(6, 4) * 256; boxes[:, 2:] += boxes[:, :2]
        >>> # original image size, before computing the feature maps
        >>> image_sizes = [(512, 512)]
        >>> output = m(i, [boxes], image_sizes)
        >>> print(output.shape)
        >>> torch.Size([6, 5, 3, 3])

104
105
    """

eellison's avatar
eellison committed
106
107
108
109
110
    __annotations__ = {
        'scales': Optional[List[float]],
        'map_levels': Optional[LevelMapper]
    }

111
112
113
114
115
116
117
118
119
120
121
    def __init__(self, featmap_names, output_size, sampling_ratio):
        super(MultiScaleRoIAlign, self).__init__()
        if isinstance(output_size, int):
            output_size = (output_size, output_size)
        self.featmap_names = featmap_names
        self.sampling_ratio = sampling_ratio
        self.output_size = tuple(output_size)
        self.scales = None
        self.map_levels = None

    def convert_to_roi_format(self, boxes):
122
        # type: (List[Tensor]) -> Tensor
123
124
125
126
        concat_boxes = torch.cat(boxes, dim=0)
        device, dtype = concat_boxes.device, concat_boxes.dtype
        ids = torch.cat(
            [
eellison's avatar
eellison committed
127
                torch.full_like(b[:, :1], i, dtype=dtype, layout=torch.strided, device=device)
128
129
130
131
132
133
134
135
                for i, b in enumerate(boxes)
            ],
            dim=0,
        )
        rois = torch.cat([ids, concat_boxes], dim=1)
        return rois

    def infer_scale(self, feature, original_size):
136
        # type: (Tensor, List[int]) -> float
137
138
        # assumption: the scale is of the form 2 ** (-k), with k integer
        size = feature.shape[-2:]
eellison's avatar
eellison committed
139
        possible_scales = torch.jit.annotate(List[float], [])
140
        for s1, s2 in zip(size, original_size):
141
            approx_scale = float(s1) / float(s2)
eellison's avatar
eellison committed
142
            scale = 2 ** float(torch.tensor(approx_scale).log2().round())
143
144
145
146
147
            possible_scales.append(scale)
        assert possible_scales[0] == possible_scales[1]
        return possible_scales[0]

    def setup_scales(self, features, image_shapes):
148
        # type: (List[Tensor], List[Tuple[int, int]]) -> None
eellison's avatar
eellison committed
149
150
151
152
153
154
155
156
        assert len(image_shapes) != 0
        max_x = 0
        max_y = 0
        for shape in image_shapes:
            max_x = max(shape[0], max_x)
            max_y = max(shape[1], max_y)
        original_input_shape = (max_x, max_y)

157
158
159
160
161
162
        scales = [self.infer_scale(feat, original_input_shape) for feat in features]
        # get the levels in the feature map by leveraging the fact that the network always
        # downsamples by a factor of 2 at each level.
        lvl_min = -torch.log2(torch.tensor(scales[0], dtype=torch.float32)).item()
        lvl_max = -torch.log2(torch.tensor(scales[-1], dtype=torch.float32)).item()
        self.scales = scales
eellison's avatar
eellison committed
163
        self.map_levels = initLevelMapper(int(lvl_min), int(lvl_max))
164
165

    def forward(self, x, boxes, image_shapes):
166
        # type: (Dict[str, Tensor], List[Tensor], List[Tuple[int, int]]) -> Tensor
167
168
        """
        Arguments:
169
170
171
            x (OrderedDict[Tensor]): feature maps for each level. They are assumed to have
                all the same number of channels, but they can have different sizes.
            boxes (List[Tensor[N, 4]]): boxes to be used to perform the pooling operation, in
172
                (x1, y1, x2, y2) format and in the image reference size, not the feature map
173
174
175
176
                reference.
            image_shapes (List[Tuple[height, width]]): the sizes of each image before they
                have been fed to a CNN to obtain feature maps. This allows us to infer the
                scale factor for each one of the levels to be pooled.
177
178
179
        Returns:
            result (Tensor)
        """
eellison's avatar
eellison committed
180
181
182
183
184
        x_filtered = []
        for k, v in x.items():
            if k in self.featmap_names:
                x_filtered.append(v)
        num_levels = len(x_filtered)
185
186
        rois = self.convert_to_roi_format(boxes)
        if self.scales is None:
eellison's avatar
eellison committed
187
188
189
190
            self.setup_scales(x_filtered, image_shapes)

        scales = self.scales
        assert scales is not None
191
192
193

        if num_levels == 1:
            return roi_align(
eellison's avatar
eellison committed
194
                x_filtered[0], rois,
195
                output_size=self.output_size,
eellison's avatar
eellison committed
196
                spatial_scale=scales[0],
197
198
199
                sampling_ratio=self.sampling_ratio
            )

eellison's avatar
eellison committed
200
201
202
203
        mapper = self.map_levels
        assert mapper is not None

        levels = mapper(boxes)
204
205

        num_rois = len(rois)
eellison's avatar
eellison committed
206
        num_channels = x_filtered[0].shape[1]
207

eellison's avatar
eellison committed
208
        dtype, device = x_filtered[0].dtype, x_filtered[0].device
209
210
211
212
213
214
        result = torch.zeros(
            (num_rois, num_channels,) + self.output_size,
            dtype=dtype,
            device=device,
        )

eellison's avatar
eellison committed
215
216
        tracing_results = []
        for level, (per_level_feature, scale) in enumerate(zip(x_filtered, scales)):
217
218
219
            idx_in_level = torch.nonzero(levels == level).squeeze(1)
            rois_per_level = rois[idx_in_level]

220
            result_idx_in_level = roi_align(
221
222
                per_level_feature, rois_per_level,
                output_size=self.output_size,
223
224
225
                spatial_scale=scale, sampling_ratio=self.sampling_ratio)

            if torchvision._is_tracing():
eellison's avatar
eellison committed
226
                tracing_results.append(result_idx_in_level.to(dtype))
227
228
            else:
                result[idx_in_level] = result_idx_in_level
229

230
        if torchvision._is_tracing():
eellison's avatar
eellison committed
231
232
            result = _onnx_merge_levels(levels, tracing_results)

233
        return result