roi_heads.py 33.3 KB
Newer Older
1
import torch
2
import torchvision
3
4

import torch.nn.functional as F
eellison's avatar
eellison committed
5
from torch import nn, Tensor
6
7
8

from torchvision.ops import boxes as box_ops
from torchvision.ops import misc as misc_nn_ops
eellison's avatar
eellison committed
9

10
11
12
13
from torchvision.ops import roi_align

from . import _utils as det_utils

eellison's avatar
eellison committed
14
15
from torch.jit.annotations import Optional, List, Dict, Tuple

16
17

def fastrcnn_loss(class_logits, box_regression, labels, regression_targets):
18
    # type: (Tensor, Tensor, List[Tensor], List[Tensor]) -> Tuple[Tensor, Tensor]
19
20
21
22
23
24
    """
    Computes the loss for Faster R-CNN.

    Arguments:
        class_logits (Tensor)
        box_regression (Tensor)
25
26
        labels (list[BoxList])
        regression_targets (Tensor)
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

    Returns:
        classification_loss (Tensor)
        box_loss (Tensor)
    """

    labels = torch.cat(labels, dim=0)
    regression_targets = torch.cat(regression_targets, dim=0)

    classification_loss = F.cross_entropy(class_logits, labels)

    # get indices that correspond to the regression targets for
    # the corresponding ground truth labels, to be used with
    # advanced indexing
    sampled_pos_inds_subset = torch.nonzero(labels > 0).squeeze(1)
    labels_pos = labels[sampled_pos_inds_subset]
    N, num_classes = class_logits.shape
    box_regression = box_regression.reshape(N, -1, 4)

46
    box_loss = det_utils.smooth_l1_loss(
47
48
        box_regression[sampled_pos_inds_subset, labels_pos],
        regression_targets[sampled_pos_inds_subset],
49
50
        beta=1 / 9,
        size_average=False,
51
52
53
54
55
56
57
    )
    box_loss = box_loss / labels.numel()

    return classification_loss, box_loss


def maskrcnn_inference(x, labels):
58
    # type: (Tensor, List[Tensor]) -> List[Tensor]
59
60
61
62
63
64
65
66
    """
    From the results of the CNN, post process the masks
    by taking the mask corresponding to the class with max
    probability (which are of fixed size and directly output
    by the CNN) and return the masks in the mask field of the BoxList.

    Arguments:
        x (Tensor): the mask logits
67
        labels (list[BoxList]): bounding boxes that are used as
68
69
70
71
72
73
74
75
76
77
            reference, one for ech image

    Returns:
        results (list[BoxList]): one BoxList for each image, containing
            the extra field mask
    """
    mask_prob = x.sigmoid()

    # select masks coresponding to the predicted classes
    num_masks = x.shape[0]
Francisco Massa's avatar
Francisco Massa committed
78
    boxes_per_image = [label.shape[0] for label in labels]
79
80
81
    labels = torch.cat(labels)
    index = torch.arange(num_masks, device=labels.device)
    mask_prob = mask_prob[index, labels][:, None]
82
    mask_prob = mask_prob.split(boxes_per_image, dim=0)
83

84
    return mask_prob
85
86
87


def project_masks_on_boxes(gt_masks, boxes, matched_idxs, M):
88
    # type: (Tensor, Tensor, Tensor, int) -> Tensor
89
90
91
92
93
94
95
96
97
98
    """
    Given segmentation masks and the bounding boxes corresponding
    to the location of the masks in the image, this function
    crops and resizes the masks in the position defined by the
    boxes. This prepares the masks for them to be fed to the
    loss computation as the targets.
    """
    matched_idxs = matched_idxs.to(boxes)
    rois = torch.cat([matched_idxs[:, None], boxes], dim=1)
    gt_masks = gt_masks[:, None].to(rois)
eellison's avatar
eellison committed
99
    return roi_align(gt_masks, rois, (M, M), 1.)[:, 0]
100
101


102
def maskrcnn_loss(mask_logits, proposals, gt_masks, gt_labels, mask_matched_idxs):
103
    # type: (Tensor, List[Tensor], List[Tensor], List[Tensor], List[Tensor]) -> Tensor
104
105
106
107
108
109
110
111
112
113
    """
    Arguments:
        proposals (list[BoxList])
        mask_logits (Tensor)
        targets (list[BoxList])

    Return:
        mask_loss (Tensor): scalar tensor containing the loss
    """

114
    discretization_size = mask_logits.shape[-1]
Francisco Massa's avatar
Francisco Massa committed
115
    labels = [gt_label[idxs] for gt_label, idxs in zip(gt_labels, mask_matched_idxs)]
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    mask_targets = [
        project_masks_on_boxes(m, p, i, discretization_size)
        for m, p, i in zip(gt_masks, proposals, mask_matched_idxs)
    ]

    labels = torch.cat(labels, dim=0)
    mask_targets = torch.cat(mask_targets, dim=0)

    # torch.mean (in binary_cross_entropy_with_logits) doesn't
    # accept empty tensors, so handle it separately
    if mask_targets.numel() == 0:
        return mask_logits.sum() * 0

    mask_loss = F.binary_cross_entropy_with_logits(
        mask_logits[torch.arange(labels.shape[0], device=labels.device), labels], mask_targets
    )
    return mask_loss


def keypoints_to_heatmap(keypoints, rois, heatmap_size):
136
    # type: (Tensor, Tensor, int) -> Tuple[Tensor, Tensor]
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    offset_x = rois[:, 0]
    offset_y = rois[:, 1]
    scale_x = heatmap_size / (rois[:, 2] - rois[:, 0])
    scale_y = heatmap_size / (rois[:, 3] - rois[:, 1])

    offset_x = offset_x[:, None]
    offset_y = offset_y[:, None]
    scale_x = scale_x[:, None]
    scale_y = scale_y[:, None]

    x = keypoints[..., 0]
    y = keypoints[..., 1]

    x_boundary_inds = x == rois[:, 2][:, None]
    y_boundary_inds = y == rois[:, 3][:, None]

    x = (x - offset_x) * scale_x
    x = x.floor().long()
    y = (y - offset_y) * scale_y
    y = y.floor().long()

eellison's avatar
eellison committed
158
159
    x[x_boundary_inds] = torch.tensor(heatmap_size - 1)
    y[y_boundary_inds] = torch.tensor(heatmap_size - 1)
160
161
162
163
164
165
166
167
168
169
170

    valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size)
    vis = keypoints[..., 2] > 0
    valid = (valid_loc & vis).long()

    lin_ind = y * heatmap_size + x
    heatmaps = lin_ind * valid

    return heatmaps, valid


171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
def _onnx_heatmaps_to_keypoints(maps, maps_i, roi_map_width, roi_map_height,
                                widths_i, heights_i, offset_x_i, offset_y_i):
    num_keypoints = torch.scalar_tensor(maps.size(1), dtype=torch.int64)

    width_correction = widths_i / roi_map_width
    height_correction = heights_i / roi_map_height

    roi_map = torch.nn.functional.interpolate(
        maps_i[None], size=(int(roi_map_height), int(roi_map_width)), mode='bicubic', align_corners=False)[0]

    w = torch.scalar_tensor(roi_map.size(2), dtype=torch.int64)
    pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)

    x_int = (pos % w)
    y_int = ((pos - x_int) / w)

    x = (torch.tensor(0.5, dtype=torch.float32) + x_int.to(dtype=torch.float32)) * \
        width_correction.to(dtype=torch.float32)
    y = (torch.tensor(0.5, dtype=torch.float32) + y_int.to(dtype=torch.float32)) * \
        height_correction.to(dtype=torch.float32)

    xy_preds_i_0 = x + offset_x_i.to(dtype=torch.float32)
    xy_preds_i_1 = y + offset_y_i.to(dtype=torch.float32)
    xy_preds_i_2 = torch.ones((xy_preds_i_1.shape), dtype=torch.float32)
    xy_preds_i = torch.stack([xy_preds_i_0.to(dtype=torch.float32),
                              xy_preds_i_1.to(dtype=torch.float32),
                              xy_preds_i_2.to(dtype=torch.float32)], 0)

    # TODO: simplify when indexing without rank will be supported by ONNX
    end_scores_i = roi_map.index_select(1, y_int.to(dtype=torch.int64)) \
        .index_select(2, x_int.to(dtype=torch.int64))[:num_keypoints, 0, 0]
    return xy_preds_i, end_scores_i


@torch.jit.script
def _onnx_heatmaps_to_keypoints_loop(maps, rois, widths_ceil, heights_ceil,
                                     widths, heights, offset_x, offset_y, num_keypoints):
    xy_preds = torch.zeros((0, 3, int(num_keypoints)), dtype=torch.float32, device=maps.device)
    end_scores = torch.zeros((0, int(num_keypoints)), dtype=torch.float32, device=maps.device)

    for i in range(int(rois.size(0))):
        xy_preds_i, end_scores_i = _onnx_heatmaps_to_keypoints(maps, maps[i],
                                                               widths_ceil[i], heights_ceil[i],
                                                               widths[i], heights[i],
                                                               offset_x[i], offset_y[i])
        xy_preds = torch.cat((xy_preds.to(dtype=torch.float32),
                              xy_preds_i.unsqueeze(0).to(dtype=torch.float32)), 0)
        end_scores = torch.cat((end_scores.to(dtype=torch.float32),
                                end_scores_i.to(dtype=torch.float32).unsqueeze(0)), 0)
    return xy_preds, end_scores


223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
def heatmaps_to_keypoints(maps, rois):
    """Extract predicted keypoint locations from heatmaps. Output has shape
    (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob)
    for each keypoint.
    """
    # This function converts a discrete image coordinate in a HEATMAP_SIZE x
    # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain
    # consistency with keypoints_to_heatmap_labels by using the conversion from
    # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a
    # continuous coordinate.
    offset_x = rois[:, 0]
    offset_y = rois[:, 1]

    widths = rois[:, 2] - rois[:, 0]
    heights = rois[:, 3] - rois[:, 1]
    widths = widths.clamp(min=1)
    heights = heights.clamp(min=1)
    widths_ceil = widths.ceil()
    heights_ceil = heights.ceil()

    num_keypoints = maps.shape[1]
244
245
246
247
248
249
250
251

    if torchvision._is_tracing():
        xy_preds, end_scores = _onnx_heatmaps_to_keypoints_loop(maps, rois,
                                                                widths_ceil, heights_ceil, widths, heights,
                                                                offset_x, offset_y,
                                                                torch.scalar_tensor(num_keypoints, dtype=torch.int64))
        return xy_preds.permute(0, 2, 1), end_scores

252
253
254
255
256
257
258
259
260
261
262
263
    xy_preds = torch.zeros((len(rois), 3, num_keypoints), dtype=torch.float32, device=maps.device)
    end_scores = torch.zeros((len(rois), num_keypoints), dtype=torch.float32, device=maps.device)
    for i in range(len(rois)):
        roi_map_width = int(widths_ceil[i].item())
        roi_map_height = int(heights_ceil[i].item())
        width_correction = widths[i] / roi_map_width
        height_correction = heights[i] / roi_map_height
        roi_map = torch.nn.functional.interpolate(
            maps[i][None], size=(roi_map_height, roi_map_width), mode='bicubic', align_corners=False)[0]
        # roi_map_probs = scores_to_probs(roi_map.copy())
        w = roi_map.shape[2]
        pos = roi_map.reshape(num_keypoints, -1).argmax(dim=1)
eellison's avatar
eellison committed
264

265
        x_int = pos % w
266
        y_int = (pos - x_int) // w
267
268
269
270
271
272
273
274
275
276
277
278
        # assert (roi_map_probs[k, y_int, x_int] ==
        #         roi_map_probs[k, :, :].max())
        x = (x_int.float() + 0.5) * width_correction
        y = (y_int.float() + 0.5) * height_correction
        xy_preds[i, 0, :] = x + offset_x[i]
        xy_preds[i, 1, :] = y + offset_y[i]
        xy_preds[i, 2, :] = 1
        end_scores[i, :] = roi_map[torch.arange(num_keypoints), y_int, x_int]

    return xy_preds.permute(0, 2, 1), end_scores


279
def keypointrcnn_loss(keypoint_logits, proposals, gt_keypoints, keypoint_matched_idxs):
280
    # type: (Tensor, List[Tensor], List[Tensor], List[Tensor]) -> Tensor
281
282
283
    N, K, H, W = keypoint_logits.shape
    assert H == W
    discretization_size = H
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    heatmaps = []
    valid = []
    for proposals_per_image, gt_kp_in_image, midx in zip(proposals, gt_keypoints, keypoint_matched_idxs):
        kp = gt_kp_in_image[midx]
        heatmaps_per_image, valid_per_image = keypoints_to_heatmap(
            kp, proposals_per_image, discretization_size
        )
        heatmaps.append(heatmaps_per_image.view(-1))
        valid.append(valid_per_image.view(-1))

    keypoint_targets = torch.cat(heatmaps, dim=0)
    valid = torch.cat(valid, dim=0).to(dtype=torch.uint8)
    valid = torch.nonzero(valid).squeeze(1)

    # torch.mean (in binary_cross_entropy_with_logits) does'nt
    # accept empty tensors, so handle it sepaartely
    if keypoint_targets.numel() == 0 or len(valid) == 0:
        return keypoint_logits.sum() * 0

    keypoint_logits = keypoint_logits.view(N * K, H * W)

    keypoint_loss = F.cross_entropy(keypoint_logits[valid], keypoint_targets[valid])
    return keypoint_loss


def keypointrcnn_inference(x, boxes):
310
    # type: (Tensor, List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
311
312
313
    kp_probs = []
    kp_scores = []

314
    boxes_per_image = [box.size(0) for box in boxes]
315
316
317
318
319
320
321
322
323
324
    x2 = x.split(boxes_per_image, dim=0)

    for xx, bb in zip(x2, boxes):
        kp_prob, scores = heatmaps_to_keypoints(xx, bb)
        kp_probs.append(kp_prob)
        kp_scores.append(scores)

    return kp_probs, kp_scores


325
def _onnx_expand_boxes(boxes, scale):
326
    # type: (Tensor, float) -> Tensor
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    w_half = (boxes[:, 2] - boxes[:, 0]) * .5
    h_half = (boxes[:, 3] - boxes[:, 1]) * .5
    x_c = (boxes[:, 2] + boxes[:, 0]) * .5
    y_c = (boxes[:, 3] + boxes[:, 1]) * .5

    w_half = w_half.to(dtype=torch.float32) * scale
    h_half = h_half.to(dtype=torch.float32) * scale

    boxes_exp0 = x_c - w_half
    boxes_exp1 = y_c - h_half
    boxes_exp2 = x_c + w_half
    boxes_exp3 = y_c + h_half
    boxes_exp = torch.stack((boxes_exp0, boxes_exp1, boxes_exp2, boxes_exp3), 1)
    return boxes_exp


343
344
# the next two functions should be merged inside Masker
# but are kept here for the moment while we need them
345
# temporarily for paste_mask_in_image
346
def expand_boxes(boxes, scale):
347
    # type: (Tensor, float) -> Tensor
348
349
    if torchvision._is_tracing():
        return _onnx_expand_boxes(boxes, scale)
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    w_half = (boxes[:, 2] - boxes[:, 0]) * .5
    h_half = (boxes[:, 3] - boxes[:, 1]) * .5
    x_c = (boxes[:, 2] + boxes[:, 0]) * .5
    y_c = (boxes[:, 3] + boxes[:, 1]) * .5

    w_half *= scale
    h_half *= scale

    boxes_exp = torch.zeros_like(boxes)
    boxes_exp[:, 0] = x_c - w_half
    boxes_exp[:, 2] = x_c + w_half
    boxes_exp[:, 1] = y_c - h_half
    boxes_exp[:, 3] = y_c + h_half
    return boxes_exp


eellison's avatar
eellison committed
366
367
368
369
370
371
@torch.jit.unused
def expand_masks_tracing_scale(M, padding):
    # type: (int, int) -> float
    return torch.tensor(M + 2 * padding).to(torch.float32) / torch.tensor(M).to(torch.float32)


372
def expand_masks(mask, padding):
373
    # type: (Tensor, int) -> Tuple[Tensor, float]
374
    M = mask.shape[-1]
eellison's avatar
eellison committed
375
376
    if torch._C._get_tracing_state():  # could not import is_tracing(), not sure why
        scale = expand_masks_tracing_scale(M, padding)
377
378
    else:
        scale = float(M + 2 * padding) / M
379
380
381
382
383
    padded_mask = torch.nn.functional.pad(mask, (padding,) * 4)
    return padded_mask, scale


def paste_mask_in_image(mask, box, im_h, im_w):
384
    # type: (Tensor, Tensor, int, int) -> Tensor
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
    TO_REMOVE = 1
    w = int(box[2] - box[0] + TO_REMOVE)
    h = int(box[3] - box[1] + TO_REMOVE)
    w = max(w, 1)
    h = max(h, 1)

    # Set shape to [batchxCxHxW]
    mask = mask.expand((1, 1, -1, -1))

    # Resize mask
    mask = misc_nn_ops.interpolate(mask, size=(h, w), mode='bilinear', align_corners=False)
    mask = mask[0][0]

    im_mask = torch.zeros((im_h, im_w), dtype=mask.dtype, device=mask.device)
    x_0 = max(box[0], 0)
    x_1 = min(box[2] + 1, im_w)
    y_0 = max(box[1], 0)
    y_1 = min(box[3] + 1, im_h)

    im_mask[y_0:y_1, x_0:x_1] = mask[
        (y_0 - box[1]):(y_1 - box[1]), (x_0 - box[0]):(x_1 - box[0])
    ]
    return im_mask


410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
def _onnx_paste_mask_in_image(mask, box, im_h, im_w):
    one = torch.ones(1, dtype=torch.int64)
    zero = torch.zeros(1, dtype=torch.int64)

    w = (box[2] - box[0] + one)
    h = (box[3] - box[1] + one)
    w = torch.max(torch.cat((w, one)))
    h = torch.max(torch.cat((h, one)))

    # Set shape to [batchxCxHxW]
    mask = mask.expand((1, 1, mask.size(0), mask.size(1)))

    # Resize mask
    mask = torch.nn.functional.interpolate(mask, size=(int(h), int(w)), mode='bilinear', align_corners=False)
    mask = mask[0][0]

    x_0 = torch.max(torch.cat((box[0].unsqueeze(0), zero)))
    x_1 = torch.min(torch.cat((box[2].unsqueeze(0) + one, im_w.unsqueeze(0))))
    y_0 = torch.max(torch.cat((box[1].unsqueeze(0), zero)))
    y_1 = torch.min(torch.cat((box[3].unsqueeze(0) + one, im_h.unsqueeze(0))))

    unpaded_im_mask = mask[(y_0 - box[1]):(y_1 - box[1]),
                           (x_0 - box[0]):(x_1 - box[0])]

    # TODO : replace below with a dynamic padding when support is added in ONNX

    # pad y
    zeros_y0 = torch.zeros(y_0, unpaded_im_mask.size(1))
    zeros_y1 = torch.zeros(im_h - y_1, unpaded_im_mask.size(1))
    concat_0 = torch.cat((zeros_y0,
                          unpaded_im_mask.to(dtype=torch.float32),
                          zeros_y1), 0)[0:im_h, :]
    # pad x
    zeros_x0 = torch.zeros(concat_0.size(0), x_0)
    zeros_x1 = torch.zeros(concat_0.size(0), im_w - x_1)
    im_mask = torch.cat((zeros_x0,
                         concat_0,
                         zeros_x1), 1)[:, :im_w]
    return im_mask


@torch.jit.script
def _onnx_paste_masks_in_image_loop(masks, boxes, im_h, im_w):
    res_append = torch.zeros(0, im_h, im_w)
    for i in range(masks.size(0)):
        mask_res = _onnx_paste_mask_in_image(masks[i][0], boxes[i], im_h, im_w)
        mask_res = mask_res.unsqueeze(0)
        res_append = torch.cat((res_append, mask_res))
    return res_append


461
def paste_masks_in_image(masks, boxes, img_shape, padding=1):
462
    # type: (Tensor, Tensor, Tuple[int, int], int) -> Tensor
463
    masks, scale = expand_masks(masks, padding=padding)
464
    boxes = expand_boxes(boxes, scale).to(dtype=torch.int64)
465
    im_h, im_w = img_shape
466
467
468
469
470

    if torchvision._is_tracing():
        return _onnx_paste_masks_in_image_loop(masks, boxes,
                                               torch.scalar_tensor(im_h, dtype=torch.int64),
                                               torch.scalar_tensor(im_w, dtype=torch.int64))[:, None]
471
472
473
474
475
    res = [
        paste_mask_in_image(m[0], b, im_h, im_w)
        for m, b in zip(masks, boxes)
    ]
    if len(res) > 0:
eellison's avatar
eellison committed
476
        ret = torch.stack(res, dim=0)[:, None]
477
    else:
eellison's avatar
eellison committed
478
479
        ret = masks.new_empty((0, 1, im_h, im_w))
    return ret
480
481
482


class RoIHeads(torch.nn.Module):
eellison's avatar
eellison committed
483
484
485
486
487
488
    __annotations__ = {
        'box_coder': det_utils.BoxCoder,
        'proposal_matcher': det_utils.Matcher,
        'fg_bg_sampler': det_utils.BalancedPositiveNegativeSampler,
    }

489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    def __init__(self,
                 box_roi_pool,
                 box_head,
                 box_predictor,
                 # Faster R-CNN training
                 fg_iou_thresh, bg_iou_thresh,
                 batch_size_per_image, positive_fraction,
                 bbox_reg_weights,
                 # Faster R-CNN inference
                 score_thresh,
                 nms_thresh,
                 detections_per_img,
                 # Mask
                 mask_roi_pool=None,
                 mask_head=None,
                 mask_predictor=None,
                 keypoint_roi_pool=None,
                 keypoint_head=None,
                 keypoint_predictor=None,
                 ):
        super(RoIHeads, self).__init__()

        self.box_similarity = box_ops.box_iou
        # assign ground-truth boxes for each proposal
        self.proposal_matcher = det_utils.Matcher(
            fg_iou_thresh,
            bg_iou_thresh,
            allow_low_quality_matches=False)

        self.fg_bg_sampler = det_utils.BalancedPositiveNegativeSampler(
            batch_size_per_image,
            positive_fraction)

        if bbox_reg_weights is None:
            bbox_reg_weights = (10., 10., 5., 5.)
        self.box_coder = det_utils.BoxCoder(bbox_reg_weights)

        self.box_roi_pool = box_roi_pool
        self.box_head = box_head
        self.box_predictor = box_predictor

        self.score_thresh = score_thresh
        self.nms_thresh = nms_thresh
        self.detections_per_img = detections_per_img

        self.mask_roi_pool = mask_roi_pool
        self.mask_head = mask_head
        self.mask_predictor = mask_predictor

        self.keypoint_roi_pool = keypoint_roi_pool
        self.keypoint_head = keypoint_head
        self.keypoint_predictor = keypoint_predictor

    def has_mask(self):
        if self.mask_roi_pool is None:
            return False
        if self.mask_head is None:
            return False
        if self.mask_predictor is None:
            return False
        return True

    def has_keypoint(self):
        if self.keypoint_roi_pool is None:
            return False
        if self.keypoint_head is None:
            return False
        if self.keypoint_predictor is None:
            return False
        return True

    def assign_targets_to_proposals(self, proposals, gt_boxes, gt_labels):
561
        # type: (List[Tensor], List[Tensor], List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]
562
563
564
565
        matched_idxs = []
        labels = []
        for proposals_in_image, gt_boxes_in_image, gt_labels_in_image in zip(proposals, gt_boxes, gt_labels):

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
            if gt_boxes_in_image.numel() == 0:
                # Background image
                device = proposals_in_image.device
                clamped_matched_idxs_in_image = torch.zeros(
                    (proposals_in_image.shape[0],), dtype=torch.int64, device=device
                )
                labels_in_image = torch.zeros(
                    (proposals_in_image.shape[0],), dtype=torch.int64, device=device
                )
            else:
                #  set to self.box_similarity when https://github.com/pytorch/pytorch/issues/27495 lands
                match_quality_matrix = box_ops.box_iou(gt_boxes_in_image, proposals_in_image)
                matched_idxs_in_image = self.proposal_matcher(match_quality_matrix)

                clamped_matched_idxs_in_image = matched_idxs_in_image.clamp(min=0)

                labels_in_image = gt_labels_in_image[clamped_matched_idxs_in_image]
                labels_in_image = labels_in_image.to(dtype=torch.int64)

                # Label background (below the low threshold)
                bg_inds = matched_idxs_in_image == self.proposal_matcher.BELOW_LOW_THRESHOLD
                labels_in_image[bg_inds] = torch.tensor(0)

                # Label ignore proposals (between low and high thresholds)
                ignore_inds = matched_idxs_in_image == self.proposal_matcher.BETWEEN_THRESHOLDS
                labels_in_image[ignore_inds] = torch.tensor(-1)  # -1 is ignored by sampler
592
593
594
595
596
597

            matched_idxs.append(clamped_matched_idxs_in_image)
            labels.append(labels_in_image)
        return matched_idxs, labels

    def subsample(self, labels):
598
        # type: (List[Tensor]) -> List[Tensor]
599
600
601
602
603
604
605
606
607
608
        sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
        sampled_inds = []
        for img_idx, (pos_inds_img, neg_inds_img) in enumerate(
            zip(sampled_pos_inds, sampled_neg_inds)
        ):
            img_sampled_inds = torch.nonzero(pos_inds_img | neg_inds_img).squeeze(1)
            sampled_inds.append(img_sampled_inds)
        return sampled_inds

    def add_gt_proposals(self, proposals, gt_boxes):
609
        # type: (List[Tensor], List[Tensor]) -> List[Tensor]
610
611
612
613
614
615
616
        proposals = [
            torch.cat((proposal, gt_box))
            for proposal, gt_box in zip(proposals, gt_boxes)
        ]

        return proposals

eellison's avatar
eellison committed
617
    def DELTEME_all(self, the_list):
618
        # type: (List[bool]) -> bool
eellison's avatar
eellison committed
619
620
621
622
623
        for i in the_list:
            if not i:
                return False
        return True

624
    def check_targets(self, targets):
625
        # type: (Optional[List[Dict[str, Tensor]]]) -> None
626
        assert targets is not None
eellison's avatar
eellison committed
627
628
629
630
        assert self.DELTEME_all(["boxes" in t for t in targets])
        assert self.DELTEME_all(["labels" in t for t in targets])
        if self.has_mask():
            assert self.DELTEME_all(["masks" in t for t in targets])
631

632
633
634
635
636
    def select_training_samples(self,
                                proposals,  # type: List[Tensor]
                                targets     # type: Optional[List[Dict[str, Tensor]]]
                                ):
        # type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor], List[Tensor]]
637
        self.check_targets(targets)
eellison's avatar
eellison committed
638
        assert targets is not None
639
        dtype = proposals[0].dtype
640
641
        device = proposals[0].device

642
        gt_boxes = [t["boxes"].to(dtype) for t in targets]
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
        gt_labels = [t["labels"] for t in targets]

        # append ground-truth bboxes to propos
        proposals = self.add_gt_proposals(proposals, gt_boxes)

        # get matching gt indices for each proposal
        matched_idxs, labels = self.assign_targets_to_proposals(proposals, gt_boxes, gt_labels)
        # sample a fixed proportion of positive-negative proposals
        sampled_inds = self.subsample(labels)
        matched_gt_boxes = []
        num_images = len(proposals)
        for img_id in range(num_images):
            img_sampled_inds = sampled_inds[img_id]
            proposals[img_id] = proposals[img_id][img_sampled_inds]
            labels[img_id] = labels[img_id][img_sampled_inds]
            matched_idxs[img_id] = matched_idxs[img_id][img_sampled_inds]
659
660
661
662
663

            gt_boxes_in_image = gt_boxes[img_id]
            if gt_boxes_in_image.numel() == 0:
                gt_boxes_in_image = torch.zeros((1, 4), dtype=dtype, device=device)
            matched_gt_boxes.append(gt_boxes_in_image[matched_idxs[img_id]])
664
665
666
667

        regression_targets = self.box_coder.encode(matched_gt_boxes, proposals)
        return proposals, matched_idxs, labels, regression_targets

668
669
670
671
672
673
674
    def postprocess_detections(self,
                               class_logits,    # type: Tensor
                               box_regression,  # type: Tensor
                               proposals,       # type: List[Tensor]
                               image_shapes     # type: List[Tuple[int, int]]
                               ):
        # type: (...) -> Tuple[List[Tensor], List[Tensor], List[Tensor]]
675
676
677
        device = class_logits.device
        num_classes = class_logits.shape[-1]

678
        boxes_per_image = [boxes_in_image.shape[0] for boxes_in_image in proposals]
679
680
681
682
        pred_boxes = self.box_coder.decode(box_regression, proposals)

        pred_scores = F.softmax(class_logits, -1)

683
684
        pred_boxes_list = pred_boxes.split(boxes_per_image, 0)
        pred_scores_list = pred_scores.split(boxes_per_image, 0)
685
686
687
688

        all_boxes = []
        all_scores = []
        all_labels = []
eellison's avatar
eellison committed
689
        for boxes, scores, image_shape in zip(pred_boxes_list, pred_scores_list, image_shapes):
690
691
692
693
694
695
696
697
698
699
700
701
702
            boxes = box_ops.clip_boxes_to_image(boxes, image_shape)

            # create labels for each prediction
            labels = torch.arange(num_classes, device=device)
            labels = labels.view(1, -1).expand_as(scores)

            # remove predictions with the background label
            boxes = boxes[:, 1:]
            scores = scores[:, 1:]
            labels = labels[:, 1:]

            # batch everything, by making every class prediction be a separate instance
            boxes = boxes.reshape(-1, 4)
703
704
            scores = scores.reshape(-1)
            labels = labels.reshape(-1)
705
706
707
708
709

            # remove low scoring boxes
            inds = torch.nonzero(scores > self.score_thresh).squeeze(1)
            boxes, scores, labels = boxes[inds], scores[inds], labels[inds]

710
711
712
713
            # remove empty boxes
            keep = box_ops.remove_small_boxes(boxes, min_size=1e-2)
            boxes, scores, labels = boxes[keep], scores[keep], labels[keep]

714
715
716
717
718
719
720
721
722
723
724
725
            # non-maximum suppression, independently done per class
            keep = box_ops.batched_nms(boxes, scores, labels, self.nms_thresh)
            # keep only topk scoring predictions
            keep = keep[:self.detections_per_img]
            boxes, scores, labels = boxes[keep], scores[keep], labels[keep]

            all_boxes.append(boxes)
            all_scores.append(scores)
            all_labels.append(labels)

        return all_boxes, all_scores, all_labels

726
727
728
729
730
731
732
    def forward(self,
                features,      # type: Dict[str, Tensor]
                proposals,     # type: List[Tensor]
                image_shapes,  # type: List[Tuple[int, int]]
                targets=None   # type: Optional[List[Dict[str, Tensor]]]
                ):
        # type: (...) -> Tuple[List[Dict[str, Tensor]], Dict[str, Tensor]]
733
734
735
736
737
738
739
        """
        Arguments:
            features (List[Tensor])
            proposals (List[Tensor[N, 4]])
            image_shapes (List[Tuple[H, W]])
            targets (List[Dict])
        """
740
741
        if targets is not None:
            for t in targets:
eellison's avatar
eellison committed
742
743
744
                # TODO: https://github.com/pytorch/pytorch/issues/26731
                floating_point_types = (torch.float, torch.double, torch.half)
                assert t["boxes"].dtype in floating_point_types, 'target boxes must of float type'
745
                assert t["labels"].dtype == torch.int64, 'target labels must of int64 type'
eellison's avatar
eellison committed
746
                if self.has_keypoint():
747
748
                    assert t["keypoints"].dtype == torch.float32, 'target keypoints must of float type'

749
750
        if self.training:
            proposals, matched_idxs, labels, regression_targets = self.select_training_samples(proposals, targets)
eellison's avatar
eellison committed
751
752
753
754
        else:
            labels = None
            regression_targets = None
            matched_idxs = None
755
756
757
758
759

        box_features = self.box_roi_pool(features, proposals, image_shapes)
        box_features = self.box_head(box_features)
        class_logits, box_regression = self.box_predictor(box_features)

eellison's avatar
eellison committed
760
761
        result = torch.jit.annotate(List[Dict[str, torch.Tensor]], [])
        losses = {}
762
        if self.training:
eellison's avatar
eellison committed
763
            assert labels is not None and regression_targets is not None
764
765
            loss_classifier, loss_box_reg = fastrcnn_loss(
                class_logits, box_regression, labels, regression_targets)
eellison's avatar
eellison committed
766
767
768
769
            losses = {
                "loss_classifier": loss_classifier,
                "loss_box_reg": loss_box_reg
            }
770
771
772
773
774
        else:
            boxes, scores, labels = self.postprocess_detections(class_logits, box_regression, proposals, image_shapes)
            num_images = len(boxes)
            for i in range(num_images):
                result.append(
eellison's avatar
eellison committed
775
776
777
778
779
                    {
                        "boxes": boxes[i],
                        "labels": labels[i],
                        "scores": scores[i],
                    }
780
781
                )

eellison's avatar
eellison committed
782
        if self.has_mask():
783
784
            mask_proposals = [p["boxes"] for p in result]
            if self.training:
eellison's avatar
eellison committed
785
                assert matched_idxs is not None
786
787
788
789
790
791
792
793
                # during training, only focus on positive boxes
                num_images = len(proposals)
                mask_proposals = []
                pos_matched_idxs = []
                for img_id in range(num_images):
                    pos = torch.nonzero(labels[img_id] > 0).squeeze(1)
                    mask_proposals.append(proposals[img_id][pos])
                    pos_matched_idxs.append(matched_idxs[img_id][pos])
eellison's avatar
eellison committed
794
795
            else:
                pos_matched_idxs = None
796

eellison's avatar
eellison committed
797
798
799
800
801
802
803
            if self.mask_roi_pool is not None:
                mask_features = self.mask_roi_pool(features, mask_proposals, image_shapes)
                mask_features = self.mask_head(mask_features)
                mask_logits = self.mask_predictor(mask_features)
            else:
                mask_logits = torch.tensor(0)
                raise Exception("Expected mask_roi_pool to be not None")
804
805
806

            loss_mask = {}
            if self.training:
eellison's avatar
eellison committed
807
808
809
810
                assert targets is not None
                assert pos_matched_idxs is not None
                assert mask_logits is not None

811
812
                gt_masks = [t["masks"] for t in targets]
                gt_labels = [t["labels"] for t in targets]
eellison's avatar
eellison committed
813
                rcnn_loss_mask = maskrcnn_loss(
814
                    mask_logits, mask_proposals,
815
                    gt_masks, gt_labels, pos_matched_idxs)
eellison's avatar
eellison committed
816
817
818
                loss_mask = {
                    "loss_mask": rcnn_loss_mask
                }
819
820
821
822
            else:
                labels = [r["labels"] for r in result]
                masks_probs = maskrcnn_inference(mask_logits, labels)
                for mask_prob, r in zip(masks_probs, result):
823
                    r["masks"] = mask_prob
824
825
826

            losses.update(loss_mask)

eellison's avatar
eellison committed
827
828
829
830
        # keep none checks in if conditional so torchscript will conditionally
        # compile each branch
        if self.keypoint_roi_pool is not None and self.keypoint_head is not None \
                and self.keypoint_predictor is not None:
831
832
833
834
835
836
            keypoint_proposals = [p["boxes"] for p in result]
            if self.training:
                # during training, only focus on positive boxes
                num_images = len(proposals)
                keypoint_proposals = []
                pos_matched_idxs = []
eellison's avatar
eellison committed
837
                assert matched_idxs is not None
838
839
840
841
                for img_id in range(num_images):
                    pos = torch.nonzero(labels[img_id] > 0).squeeze(1)
                    keypoint_proposals.append(proposals[img_id][pos])
                    pos_matched_idxs.append(matched_idxs[img_id][pos])
eellison's avatar
eellison committed
842
843
            else:
                pos_matched_idxs = None
844
845
846
847
848
849
850

            keypoint_features = self.keypoint_roi_pool(features, keypoint_proposals, image_shapes)
            keypoint_features = self.keypoint_head(keypoint_features)
            keypoint_logits = self.keypoint_predictor(keypoint_features)

            loss_keypoint = {}
            if self.training:
eellison's avatar
eellison committed
851
852
853
                assert targets is not None
                assert pos_matched_idxs is not None

854
                gt_keypoints = [t["keypoints"] for t in targets]
eellison's avatar
eellison committed
855
                rcnn_loss_keypoint = keypointrcnn_loss(
856
                    keypoint_logits, keypoint_proposals,
857
                    gt_keypoints, pos_matched_idxs)
eellison's avatar
eellison committed
858
859
860
                loss_keypoint = {
                    "loss_keypoint": rcnn_loss_keypoint
                }
861
            else:
eellison's avatar
eellison committed
862
863
864
                assert keypoint_logits is not None
                assert keypoint_proposals is not None

865
866
867
868
869
870
871
872
                keypoints_probs, kp_scores = keypointrcnn_inference(keypoint_logits, keypoint_proposals)
                for keypoint_prob, kps, r in zip(keypoints_probs, kp_scores, result):
                    r["keypoints"] = keypoint_prob
                    r["keypoints_scores"] = kps

            losses.update(loss_keypoint)

        return result, losses