usps.py 3.18 KB
Newer Older
Francisco Massa's avatar
Francisco Massa committed
1
2
3
4
5
6
7
8
9
10
from PIL import Image
import os
import numpy as np

from .utils import download_url
from .vision import VisionDataset


class USPS(VisionDataset):
    """`USPS <https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#usps>`_ Dataset.
youkaichao's avatar
youkaichao committed
11
    The data-format is : [label [index:value ]*256 \\n] * num_lines, where ``label`` lies in ``[1, 10]``.
Francisco Massa's avatar
Francisco Massa committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
    The value for each pixel lies in ``[-1, 1]``. Here we transform the ``label`` into ``[0, 9]``
    and make pixel values in ``[0, 255]``.

    Args:
        root (string): Root directory of dataset to store``USPS`` data files.
        train (bool, optional): If True, creates dataset from ``usps.bz2``,
            otherwise from ``usps.t.bz2``.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """
    split_list = {
        'train': [
            "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.bz2",
            "usps.bz2", 'ec16c51db3855ca6c91edd34d0e9b197'
        ],
        'test': [
            "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.t.bz2",
            "usps.t.bz2", '8ea070ee2aca1ac39742fdd1ef5ed118'
        ],
    }

39
40
41
42
    def __init__(self, root, train=True, transform=None, target_transform=None,
                 download=False):
        super(USPS, self).__init__(root, transform=transform,
                                   target_transform=target_transform)
Francisco Massa's avatar
Francisco Massa committed
43
44
45
46
47
48
49
50
51
        split = 'train' if train else 'test'
        url, filename, checksum = self.split_list[split]
        full_path = os.path.join(self.root, filename)

        if download and not os.path.exists(full_path):
            download_url(url, self.root, filename, md5=checksum)

        import bz2
        with bz2.open(full_path) as fp:
Francisco Massa's avatar
Francisco Massa committed
52
            raw_data = [line.decode().split() for line in fp.readlines()]
Francisco Massa's avatar
Francisco Massa committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
            imgs = [[x.split(':')[-1] for x in data[1:]] for data in raw_data]
            imgs = np.asarray(imgs, dtype=np.float32).reshape((-1, 16, 16))
            imgs = ((imgs + 1) / 2 * 255).astype(dtype=np.uint8)
            targets = [int(d[0]) - 1 for d in raw_data]

        self.data = imgs
        self.targets = targets

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
        img, target = self.data[index], int(self.targets[index])

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img, mode='L')

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        return len(self.data)