transforms_v2_kernel_infos.py 41.8 KB
Newer Older
1
2
3
import functools
import itertools

4
import PIL.Image
5
6
import pytest
import torch.testing
7
import torchvision.transforms.v2.functional as F
8
from torchvision import tv_tensors
9
10
from torchvision.transforms._functional_tensor import _max_value as get_max_value
from transforms_v2_legacy_utils import (  # noqa: F401
11
    ArgsKwargs,
12
    combinations_grid,
13
    DEFAULT_PORTRAIT_SPATIAL_SIZE,
14
15
    get_num_channels,
    ImageLoader,
16
    InfoBase,
17
    make_bounding_box_loader,
18
    make_bounding_box_loaders,
19
    make_detection_mask_loader,
20
21
    make_image_loader,
    make_image_loaders,
22
    make_image_loaders_for_interpolation,
23
    make_mask_loaders,
24
    make_video_loader,
25
    make_video_loaders,
26
27
    mark_framework_limitation,
    TestMark,
28
)
29
30
31
32

__all__ = ["KernelInfo", "KERNEL_INFOS"]


33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
class KernelInfo(InfoBase):
    def __init__(
        self,
        kernel,
        *,
        # Defaults to `kernel.__name__`. Should be set if the function is exposed under a different name
        # TODO: This can probably be removed after roll-out since we shouldn't have any aliasing then
        kernel_name=None,
        # Most common tests use these inputs to check the kernel. As such it should cover all valid code paths, but
        # should not include extensive parameter combinations to keep to overall test count moderate.
        sample_inputs_fn,
        # This function should mirror the kernel. It should have the same signature as the `kernel` and as such also
        # take tensors as inputs. Any conversion into another object type, e.g. PIL images or numpy arrays, should
        # happen inside the function. It should return a tensor or to be more precise an object that can be compared to
        # a tensor by `assert_close`. If omitted, no reference test will be performed.
        reference_fn=None,
        # These inputs are only used for the reference tests and thus can be comprehensive with regard to the parameter
        # values to be tested. If not specified, `sample_inputs_fn` will be used.
        reference_inputs_fn=None,
52
        # If true-ish, triggers a test that checks the kernel for consistency between uint8 and float32 inputs with the
53
        # reference inputs. This is usually used whenever we use a PIL kernel as reference.
54
55
56
57
        # Can be a callable in which case it will be called with `other_args, kwargs`. It should return the same
        # structure, but with adapted parameters. This is useful in case a parameter value is closely tied to the input
        # dtype.
        float32_vs_uint8=False,
58
59
60
        # Some kernels don't have dispatchers that would handle logging the usage. Thus, the kernel has to do it
        # manually. If set, triggers a test that makes sure this happens.
        logs_usage=False,
61
62
63
64
65
66
67
68
69
70
        # See InfoBase
        test_marks=None,
        # See InfoBase
        closeness_kwargs=None,
    ):
        super().__init__(id=kernel_name or kernel.__name__, test_marks=test_marks, closeness_kwargs=closeness_kwargs)
        self.kernel = kernel
        self.sample_inputs_fn = sample_inputs_fn
        self.reference_fn = reference_fn
        self.reference_inputs_fn = reference_inputs_fn
71

72
73
74
        if float32_vs_uint8 and not callable(float32_vs_uint8):
            float32_vs_uint8 = lambda other_args, kwargs: (other_args, kwargs)  # noqa: E731
        self.float32_vs_uint8 = float32_vs_uint8
75
        self.logs_usage = logs_usage
76
77


78
def pixel_difference_closeness_kwargs(uint8_atol, *, dtype=torch.uint8, mae=False):
79
    return dict(atol=uint8_atol / 255 * get_max_value(dtype), rtol=0, mae=mae)
80
81
82
83


def cuda_vs_cpu_pixel_difference(atol=1):
    return {
84
        (("TestKernels", "test_cuda_vs_cpu"), dtype, "cuda"): pixel_difference_closeness_kwargs(atol, dtype=dtype)
85
86
87
88
        for dtype in [torch.uint8, torch.float32]
    }


89
def pil_reference_pixel_difference(atol=1, mae=False):
90
    return {
91
        (("TestKernels", "test_against_reference"), torch.uint8, "cpu"): pixel_difference_closeness_kwargs(
92
            atol, mae=mae
93
94
95
96
        )
    }


97
def float32_vs_uint8_pixel_difference(atol=1, mae=False):
98
99
100
101
102
    return {
        (
            ("TestKernels", "test_float32_vs_uint8"),
            torch.float32,
            "cpu",
103
        ): pixel_difference_closeness_kwargs(atol, dtype=torch.float32, mae=mae)
104
    }
105

106

107
def scripted_vs_eager_float64_tolerances(device, atol=1e-6, rtol=1e-6):
108
109
110
111
112
    return {
        (("TestKernels", "test_scripted_vs_eager"), torch.float64, device): {"atol": atol, "rtol": rtol, "mae": False},
    }


113
114
def pil_reference_wrapper(pil_kernel):
    @functools.wraps(pil_kernel)
115
116
117
118
    def wrapper(input_tensor, *other_args, **kwargs):
        if input_tensor.dtype != torch.uint8:
            raise pytest.UsageError(f"Can only test uint8 tensor images against PIL, but input is {input_tensor.dtype}")
        if input_tensor.ndim > 3:
119
            raise pytest.UsageError(
120
                f"Can only test single tensor images against PIL, but input has shape {input_tensor.shape}"
121
122
            )

123
        input_pil = F.to_pil_image(input_tensor)
124
125
126
127
        output_pil = pil_kernel(input_pil, *other_args, **kwargs)
        if not isinstance(output_pil, PIL.Image.Image):
            return output_pil

128
        output_tensor = F.to_image(output_pil)
129
130
131
132
133
134
135
136

        # 2D mask shenanigans
        if output_tensor.ndim == 2 and input_tensor.ndim == 3:
            output_tensor = output_tensor.unsqueeze(0)
        elif output_tensor.ndim == 3 and input_tensor.ndim == 2:
            output_tensor = output_tensor.squeeze(0)

        return output_tensor
137
138
139
140

    return wrapper


141
142
143
144
def xfail_jit(reason, *, condition=None):
    return TestMark(("TestKernels", "test_scripted_vs_eager"), pytest.mark.xfail(reason=reason), condition=condition)


145
def xfail_jit_python_scalar_arg(name, *, reason=None):
146
147
    return xfail_jit(
        reason or f"Python scalar int or float for `{name}` is not supported when scripting",
148
149
150
151
        condition=lambda args_kwargs: isinstance(args_kwargs.kwargs.get(name), (int, float)),
    )


152
153
154
KERNEL_INFOS = []


155
def get_fills(*, num_channels, dtype):
156
157
    yield None

158
159
160
161
    int_value = get_max_value(dtype)
    float_value = int_value / 2
    yield int_value
    yield float_value
162

163
164
165
    for vector_type in [list, tuple]:
        yield vector_type([int_value])
        yield vector_type([float_value])
166

167
168
169
        if num_channels > 1:
            yield vector_type(float_value * c / 10 for c in range(num_channels))
            yield vector_type(int_value if c % 2 == 0 else 0 for c in range(num_channels))
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184


def float32_vs_uint8_fill_adapter(other_args, kwargs):
    fill = kwargs.get("fill")
    if fill is None:
        return other_args, kwargs

    if isinstance(fill, (int, float)):
        fill /= 255
    else:
        fill = type(fill)(fill_ / 255 for fill_ in fill)

    return other_args, dict(kwargs, fill=fill)


185
186
187
188
_PERSPECTIVE_COEFFS = [
    [1.2405, 0.1772, -6.9113, 0.0463, 1.251, -5.235, 0.00013, 0.0018],
    [0.7366, -0.11724, 1.45775, -0.15012, 0.73406, 2.6019, -0.0072, -0.0063],
]
189
190
_STARTPOINTS = [[0, 1], [2, 3], [4, 5], [6, 7]]
_ENDPOINTS = [[9, 8], [7, 6], [5, 4], [3, 2]]
191
192
193


def sample_inputs_perspective_image_tensor():
194
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE]):
195
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
196
197
198
199
200
            yield ArgsKwargs(
                image_loader, startpoints=None, endpoints=None, fill=fill, coefficients=_PERSPECTIVE_COEFFS[0]
            )

    yield ArgsKwargs(make_image_loader(), startpoints=_STARTPOINTS, endpoints=_ENDPOINTS)
201
202
203


def reference_inputs_perspective_image_tensor():
204
205
206
207
208
209
210
    for image_loader, coefficients, interpolation in itertools.product(
        make_image_loaders_for_interpolation(),
        _PERSPECTIVE_COEFFS,
        [
            F.InterpolationMode.NEAREST,
            F.InterpolationMode.BILINEAR,
        ],
211
212
    ):
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
213
214
215
216
            # FIXME: PIL kernel doesn't support sequences of length 1 if the number of channels is larger. Shouldn't it?
            if isinstance(fill, (list, tuple)):
                continue

217
218
219
220
221
222
223
224
            yield ArgsKwargs(
                image_loader,
                startpoints=None,
                endpoints=None,
                interpolation=interpolation,
                fill=fill,
                coefficients=coefficients,
            )
225
226


227
228
def sample_inputs_perspective_bounding_boxes():
    for bounding_boxes_loader in make_bounding_box_loaders():
229
        yield ArgsKwargs(
230
231
            bounding_boxes_loader,
            format=bounding_boxes_loader.format,
Philip Meier's avatar
Philip Meier committed
232
            canvas_size=bounding_boxes_loader.canvas_size,
233
234
235
            startpoints=None,
            endpoints=None,
            coefficients=_PERSPECTIVE_COEFFS[0],
236
237
        )

238
    format = tv_tensors.BoundingBoxFormat.XYXY
239
    loader = make_bounding_box_loader(format=format)
240
    yield ArgsKwargs(
Philip Meier's avatar
Philip Meier committed
241
        loader, format=format, canvas_size=loader.canvas_size, startpoints=_STARTPOINTS, endpoints=_ENDPOINTS
242
243
    )

244
245

def sample_inputs_perspective_mask():
246
    for mask_loader in make_mask_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE]):
247
248
249
        yield ArgsKwargs(mask_loader, startpoints=None, endpoints=None, coefficients=_PERSPECTIVE_COEFFS[0])

    yield ArgsKwargs(make_detection_mask_loader(), startpoints=_STARTPOINTS, endpoints=_ENDPOINTS)
250
251
252
253
254
255


def reference_inputs_perspective_mask():
    for mask_loader, perspective_coeffs in itertools.product(
        make_mask_loaders(extra_dims=[()], num_objects=[1]), _PERSPECTIVE_COEFFS
    ):
256
        yield ArgsKwargs(mask_loader, startpoints=None, endpoints=None, coefficients=perspective_coeffs)
257
258


259
def sample_inputs_perspective_video():
260
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
261
262
263
        yield ArgsKwargs(video_loader, startpoints=None, endpoints=None, coefficients=_PERSPECTIVE_COEFFS[0])

    yield ArgsKwargs(make_video_loader(), startpoints=_STARTPOINTS, endpoints=_ENDPOINTS)
264
265


266
267
268
KERNEL_INFOS.extend(
    [
        KernelInfo(
269
            F.perspective_image,
270
            sample_inputs_fn=sample_inputs_perspective_image_tensor,
271
            reference_fn=pil_reference_wrapper(F._perspective_image_pil),
272
            reference_inputs_fn=reference_inputs_perspective_image_tensor,
273
            float32_vs_uint8=float32_vs_uint8_fill_adapter,
274
            closeness_kwargs={
275
                **pil_reference_pixel_difference(2, mae=True),
276
277
                **cuda_vs_cpu_pixel_difference(),
                **float32_vs_uint8_pixel_difference(),
278
279
                **scripted_vs_eager_float64_tolerances("cpu", atol=1e-5, rtol=1e-5),
                **scripted_vs_eager_float64_tolerances("cuda", atol=1e-5, rtol=1e-5),
280
            },
281
            test_marks=[xfail_jit_python_scalar_arg("fill")],
282
283
        ),
        KernelInfo(
284
285
            F.perspective_bounding_boxes,
            sample_inputs_fn=sample_inputs_perspective_bounding_boxes,
286
287
288
289
            closeness_kwargs={
                **scripted_vs_eager_float64_tolerances("cpu", atol=1e-6, rtol=1e-6),
                **scripted_vs_eager_float64_tolerances("cuda", atol=1e-6, rtol=1e-6),
            },
290
291
292
293
        ),
        KernelInfo(
            F.perspective_mask,
            sample_inputs_fn=sample_inputs_perspective_mask,
294
            reference_fn=pil_reference_wrapper(F._perspective_image_pil),
295
            reference_inputs_fn=reference_inputs_perspective_mask,
296
297
298
299
            float32_vs_uint8=True,
            closeness_kwargs={
                (("TestKernels", "test_against_reference"), torch.uint8, "cpu"): dict(atol=10, rtol=0),
            },
300
301
302
303
        ),
        KernelInfo(
            F.perspective_video,
            sample_inputs_fn=sample_inputs_perspective_video,
304
305
            closeness_kwargs={
                **cuda_vs_cpu_pixel_difference(),
306
307
                **scripted_vs_eager_float64_tolerances("cpu", atol=1e-5, rtol=1e-5),
                **scripted_vs_eager_float64_tolerances("cuda", atol=1e-5, rtol=1e-5),
308
            },
309
310
311
312
313
        ),
    ]
)


Philip Meier's avatar
Philip Meier committed
314
315
def _get_elastic_displacement(canvas_size):
    return torch.rand(1, *canvas_size, 2)
316
317
318


def sample_inputs_elastic_image_tensor():
319
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE]):
Philip Meier's avatar
Philip Meier committed
320
        displacement = _get_elastic_displacement(image_loader.canvas_size)
321
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
322
323
324
325
326
            yield ArgsKwargs(image_loader, displacement=displacement, fill=fill)


def reference_inputs_elastic_image_tensor():
    for image_loader, interpolation in itertools.product(
327
        make_image_loaders_for_interpolation(),
328
329
330
331
332
333
        [
            F.InterpolationMode.NEAREST,
            F.InterpolationMode.BILINEAR,
            F.InterpolationMode.BICUBIC,
        ],
    ):
Philip Meier's avatar
Philip Meier committed
334
        displacement = _get_elastic_displacement(image_loader.canvas_size)
335
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
336
337
338
            yield ArgsKwargs(image_loader, interpolation=interpolation, displacement=displacement, fill=fill)


339
340
def sample_inputs_elastic_bounding_boxes():
    for bounding_boxes_loader in make_bounding_box_loaders():
Philip Meier's avatar
Philip Meier committed
341
        displacement = _get_elastic_displacement(bounding_boxes_loader.canvas_size)
342
        yield ArgsKwargs(
343
344
            bounding_boxes_loader,
            format=bounding_boxes_loader.format,
Philip Meier's avatar
Philip Meier committed
345
            canvas_size=bounding_boxes_loader.canvas_size,
346
347
348
349
350
            displacement=displacement,
        )


def sample_inputs_elastic_mask():
351
    for mask_loader in make_mask_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE]):
352
353
354
355
        displacement = _get_elastic_displacement(mask_loader.shape[-2:])
        yield ArgsKwargs(mask_loader, displacement=displacement)


356
def sample_inputs_elastic_video():
357
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
358
359
360
361
        displacement = _get_elastic_displacement(video_loader.shape[-2:])
        yield ArgsKwargs(video_loader, displacement=displacement)


362
363
364
KERNEL_INFOS.extend(
    [
        KernelInfo(
365
            F.elastic_image,
366
367
            sample_inputs_fn=sample_inputs_elastic_image_tensor,
            reference_inputs_fn=reference_inputs_elastic_image_tensor,
368
            float32_vs_uint8=float32_vs_uint8_fill_adapter,
369
            closeness_kwargs={
370
                **float32_vs_uint8_pixel_difference(6, mae=True),
371
372
                **cuda_vs_cpu_pixel_difference(),
            },
373
            test_marks=[xfail_jit_python_scalar_arg("fill")],
374
375
        ),
        KernelInfo(
376
377
            F.elastic_bounding_boxes,
            sample_inputs_fn=sample_inputs_elastic_bounding_boxes,
378
379
380
381
        ),
        KernelInfo(
            F.elastic_mask,
            sample_inputs_fn=sample_inputs_elastic_mask,
382
383
384
385
        ),
        KernelInfo(
            F.elastic_video,
            sample_inputs_fn=sample_inputs_elastic_video,
386
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
387
388
389
390
391
        ),
    ]
)


392
_CENTER_CROP_SPATIAL_SIZES = [(16, 16), (7, 33), (31, 9)]
393
_CENTER_CROP_OUTPUT_SIZES = [[4, 3], [42, 70], [4], 3, (5, 2), (6,)]
394
395
396
397


def sample_inputs_center_crop_image_tensor():
    for image_loader, output_size in itertools.product(
398
        make_image_loaders(sizes=[(16, 17)], color_spaces=["RGB"], dtypes=[torch.float32]),
399
400
401
402
403
404
        [
            # valid `output_size` types for which cropping is applied to both dimensions
            *[5, (4,), (2, 3), [6], [3, 2]],
            # `output_size`'s for which at least one dimension needs to be padded
            *[[4, 18], [17, 5], [17, 18]],
        ],
405
406
407
408
409
410
    ):
        yield ArgsKwargs(image_loader, output_size=output_size)


def reference_inputs_center_crop_image_tensor():
    for image_loader, output_size in itertools.product(
411
412
        make_image_loaders(sizes=_CENTER_CROP_SPATIAL_SIZES, extra_dims=[()], dtypes=[torch.uint8]),
        _CENTER_CROP_OUTPUT_SIZES,
413
414
415
416
    ):
        yield ArgsKwargs(image_loader, output_size=output_size)


417
418
def sample_inputs_center_crop_bounding_boxes():
    for bounding_boxes_loader, output_size in itertools.product(make_bounding_box_loaders(), _CENTER_CROP_OUTPUT_SIZES):
419
        yield ArgsKwargs(
420
421
            bounding_boxes_loader,
            format=bounding_boxes_loader.format,
Philip Meier's avatar
Philip Meier committed
422
            canvas_size=bounding_boxes_loader.canvas_size,
423
424
425
426
427
            output_size=output_size,
        )


def sample_inputs_center_crop_mask():
428
    for mask_loader in make_mask_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_categories=[10], num_objects=[5]):
429
430
        height, width = mask_loader.shape[-2:]
        yield ArgsKwargs(mask_loader, output_size=(height // 2, width // 2))
431
432
433
434


def reference_inputs_center_crop_mask():
    for mask_loader, output_size in itertools.product(
435
        make_mask_loaders(sizes=_CENTER_CROP_SPATIAL_SIZES, extra_dims=[()], num_objects=[1]), _CENTER_CROP_OUTPUT_SIZES
436
437
438
439
    ):
        yield ArgsKwargs(mask_loader, output_size=output_size)


440
def sample_inputs_center_crop_video():
441
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
442
443
444
445
        height, width = video_loader.shape[-2:]
        yield ArgsKwargs(video_loader, output_size=(height // 2, width // 2))


446
447
448
KERNEL_INFOS.extend(
    [
        KernelInfo(
449
            F.center_crop_image,
450
            sample_inputs_fn=sample_inputs_center_crop_image_tensor,
451
            reference_fn=pil_reference_wrapper(F._center_crop_image_pil),
452
            reference_inputs_fn=reference_inputs_center_crop_image_tensor,
453
            float32_vs_uint8=True,
454
            test_marks=[
455
                xfail_jit_python_scalar_arg("output_size"),
456
            ],
457
458
        ),
        KernelInfo(
459
460
            F.center_crop_bounding_boxes,
            sample_inputs_fn=sample_inputs_center_crop_bounding_boxes,
461
            test_marks=[
462
                xfail_jit_python_scalar_arg("output_size"),
463
            ],
464
465
466
467
        ),
        KernelInfo(
            F.center_crop_mask,
            sample_inputs_fn=sample_inputs_center_crop_mask,
468
            reference_fn=pil_reference_wrapper(F._center_crop_image_pil),
469
            reference_inputs_fn=reference_inputs_center_crop_mask,
470
            float32_vs_uint8=True,
471
            test_marks=[
472
                xfail_jit_python_scalar_arg("output_size"),
473
            ],
474
        ),
475
476
477
478
        KernelInfo(
            F.center_crop_video,
            sample_inputs_fn=sample_inputs_center_crop_video,
        ),
479
480
481
482
483
    ]
)


def sample_inputs_equalize_image_tensor():
484
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
485
486
487
488
        yield ArgsKwargs(image_loader)


def reference_inputs_equalize_image_tensor():
489
490
491
    # We are not using `make_image_loaders` here since that uniformly samples the values over the whole value range.
    # Since the whole point of this kernel is to transform an arbitrary distribution of values into a uniform one,
    # the information gain is low if we already provide something really close to the expected value.
492
    def make_uniform_band_image(shape, dtype, device, *, low_factor, high_factor, memory_format):
493
494
495
496
497
498
499
        if dtype.is_floating_point:
            low = low_factor
            high = high_factor
        else:
            max_value = torch.iinfo(dtype).max
            low = int(low_factor * max_value)
            high = int(high_factor * max_value)
500
501
502
        return torch.testing.make_tensor(shape, dtype=dtype, device=device, low=low, high=high).to(
            memory_format=memory_format, copy=True
        )
503

504
    def make_beta_distributed_image(shape, dtype, device, *, alpha, beta, memory_format):
505
506
507
        image = torch.distributions.Beta(alpha, beta).sample(shape)
        if not dtype.is_floating_point:
            image.mul_(torch.iinfo(dtype).max).round_()
508
        return image.to(dtype=dtype, device=device, memory_format=memory_format, copy=True)
509

Philip Meier's avatar
Philip Meier committed
510
    canvas_size = (256, 256)
511
    for dtype, color_space, fn in itertools.product(
512
        [torch.uint8],
513
        ["GRAY", "RGB"],
514
        [
515
516
            lambda shape, dtype, device, memory_format: torch.zeros(shape, dtype=dtype, device=device).to(
                memory_format=memory_format, copy=True
517
            ),
518
519
520
            lambda shape, dtype, device, memory_format: torch.full(
                shape, 1.0 if dtype.is_floating_point else torch.iinfo(dtype).max, dtype=dtype, device=device
            ).to(memory_format=memory_format, copy=True),
521
            *[
522
523
524
525
526
                functools.partial(make_uniform_band_image, low_factor=low_factor, high_factor=high_factor)
                for low_factor, high_factor in [
                    (0.0, 0.25),
                    (0.25, 0.75),
                    (0.75, 1.0),
527
528
529
                ]
            ],
            *[
530
                functools.partial(make_beta_distributed_image, alpha=alpha, beta=beta)
531
532
533
534
535
536
537
538
                for alpha, beta in [
                    (0.5, 0.5),
                    (2, 2),
                    (2, 5),
                    (5, 2),
                ]
            ],
        ],
539
    ):
Philip Meier's avatar
Philip Meier committed
540
        image_loader = ImageLoader(fn, shape=(get_num_channels(color_space), *canvas_size), dtype=dtype)
541
542
543
        yield ArgsKwargs(image_loader)


544
def sample_inputs_equalize_video():
545
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
546
547
548
549
550
551
        yield ArgsKwargs(video_loader)


KERNEL_INFOS.extend(
    [
        KernelInfo(
552
            F.equalize_image,
553
554
            kernel_name="equalize_image_tensor",
            sample_inputs_fn=sample_inputs_equalize_image_tensor,
555
            reference_fn=pil_reference_wrapper(F._equalize_image_pil),
556
            float32_vs_uint8=True,
557
558
559
560
561
562
563
            reference_inputs_fn=reference_inputs_equalize_image_tensor,
        ),
        KernelInfo(
            F.equalize_video,
            sample_inputs_fn=sample_inputs_equalize_video,
        ),
    ]
564
565
566
567
)


def sample_inputs_invert_image_tensor():
568
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
569
570
571
572
        yield ArgsKwargs(image_loader)


def reference_inputs_invert_image_tensor():
573
    for image_loader in make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]):
574
575
576
        yield ArgsKwargs(image_loader)


577
def sample_inputs_invert_video():
578
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
579
580
581
582
583
584
        yield ArgsKwargs(video_loader)


KERNEL_INFOS.extend(
    [
        KernelInfo(
585
            F.invert_image,
586
587
            kernel_name="invert_image_tensor",
            sample_inputs_fn=sample_inputs_invert_image_tensor,
588
            reference_fn=pil_reference_wrapper(F._invert_image_pil),
589
            reference_inputs_fn=reference_inputs_invert_image_tensor,
590
            float32_vs_uint8=True,
591
592
593
594
595
596
        ),
        KernelInfo(
            F.invert_video,
            sample_inputs_fn=sample_inputs_invert_video,
        ),
    ]
597
598
599
600
601
602
603
)


_POSTERIZE_BITS = [1, 4, 8]


def sample_inputs_posterize_image_tensor():
604
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
605
606
607
608
609
        yield ArgsKwargs(image_loader, bits=_POSTERIZE_BITS[0])


def reference_inputs_posterize_image_tensor():
    for image_loader, bits in itertools.product(
610
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
611
612
613
614
615
        _POSTERIZE_BITS,
    ):
        yield ArgsKwargs(image_loader, bits=bits)


616
def sample_inputs_posterize_video():
617
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
618
619
620
621
622
623
        yield ArgsKwargs(video_loader, bits=_POSTERIZE_BITS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
624
            F.posterize_image,
625
626
            kernel_name="posterize_image_tensor",
            sample_inputs_fn=sample_inputs_posterize_image_tensor,
627
            reference_fn=pil_reference_wrapper(F._posterize_image_pil),
628
            reference_inputs_fn=reference_inputs_posterize_image_tensor,
629
630
            float32_vs_uint8=True,
            closeness_kwargs=float32_vs_uint8_pixel_difference(),
631
632
633
634
635
636
        ),
        KernelInfo(
            F.posterize_video,
            sample_inputs_fn=sample_inputs_posterize_video,
        ),
    ]
637
638
639
640
641
642
643
644
645
646
)


def _get_solarize_thresholds(dtype):
    for factor in [0.1, 0.5]:
        max_value = get_max_value(dtype)
        yield (float if dtype.is_floating_point else int)(max_value * factor)


def sample_inputs_solarize_image_tensor():
647
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
648
649
650
651
        yield ArgsKwargs(image_loader, threshold=next(_get_solarize_thresholds(image_loader.dtype)))


def reference_inputs_solarize_image_tensor():
652
    for image_loader in make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]):
653
654
655
656
        for threshold in _get_solarize_thresholds(image_loader.dtype):
            yield ArgsKwargs(image_loader, threshold=threshold)


657
658
659
660
def uint8_to_float32_threshold_adapter(other_args, kwargs):
    return other_args, dict(threshold=kwargs["threshold"] / 255)


661
def sample_inputs_solarize_video():
662
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
663
664
665
666
667
668
        yield ArgsKwargs(video_loader, threshold=next(_get_solarize_thresholds(video_loader.dtype)))


KERNEL_INFOS.extend(
    [
        KernelInfo(
669
            F.solarize_image,
670
671
            kernel_name="solarize_image_tensor",
            sample_inputs_fn=sample_inputs_solarize_image_tensor,
672
            reference_fn=pil_reference_wrapper(F._solarize_image_pil),
673
            reference_inputs_fn=reference_inputs_solarize_image_tensor,
674
675
            float32_vs_uint8=uint8_to_float32_threshold_adapter,
            closeness_kwargs=float32_vs_uint8_pixel_difference(),
676
677
678
679
680
681
        ),
        KernelInfo(
            F.solarize_video,
            sample_inputs_fn=sample_inputs_solarize_video,
        ),
    ]
682
683
684
685
)


def sample_inputs_autocontrast_image_tensor():
686
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
687
688
689
690
        yield ArgsKwargs(image_loader)


def reference_inputs_autocontrast_image_tensor():
691
    for image_loader in make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]):
692
693
694
        yield ArgsKwargs(image_loader)


695
def sample_inputs_autocontrast_video():
696
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
697
698
699
700
701
702
        yield ArgsKwargs(video_loader)


KERNEL_INFOS.extend(
    [
        KernelInfo(
703
            F.autocontrast_image,
704
705
            kernel_name="autocontrast_image_tensor",
            sample_inputs_fn=sample_inputs_autocontrast_image_tensor,
706
            reference_fn=pil_reference_wrapper(F._autocontrast_image_pil),
707
            reference_inputs_fn=reference_inputs_autocontrast_image_tensor,
708
709
710
711
712
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(),
                **float32_vs_uint8_pixel_difference(),
            },
713
714
715
716
717
718
        ),
        KernelInfo(
            F.autocontrast_video,
            sample_inputs_fn=sample_inputs_autocontrast_video,
        ),
    ]
719
720
721
722
723
724
725
)

_ADJUST_SHARPNESS_FACTORS = [0.1, 0.5]


def sample_inputs_adjust_sharpness_image_tensor():
    for image_loader in make_image_loaders(
726
        sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE, (2, 2)],
727
        color_spaces=("GRAY", "RGB"),
728
729
730
731
732
733
    ):
        yield ArgsKwargs(image_loader, sharpness_factor=_ADJUST_SHARPNESS_FACTORS[0])


def reference_inputs_adjust_sharpness_image_tensor():
    for image_loader, sharpness_factor in itertools.product(
734
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
735
736
737
738
739
        _ADJUST_SHARPNESS_FACTORS,
    ):
        yield ArgsKwargs(image_loader, sharpness_factor=sharpness_factor)


740
def sample_inputs_adjust_sharpness_video():
741
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
742
743
744
745
746
747
        yield ArgsKwargs(video_loader, sharpness_factor=_ADJUST_SHARPNESS_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
748
            F.adjust_sharpness_image,
749
750
            kernel_name="adjust_sharpness_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_sharpness_image_tensor,
751
            reference_fn=pil_reference_wrapper(F._adjust_sharpness_image_pil),
752
            reference_inputs_fn=reference_inputs_adjust_sharpness_image_tensor,
753
754
            float32_vs_uint8=True,
            closeness_kwargs=float32_vs_uint8_pixel_difference(2),
755
756
757
758
759
760
        ),
        KernelInfo(
            F.adjust_sharpness_video,
            sample_inputs_fn=sample_inputs_adjust_sharpness_video,
        ),
    ]
761
762
763
)


764
765
766
767
_ADJUST_CONTRAST_FACTORS = [0.1, 0.5]


def sample_inputs_adjust_contrast_image_tensor():
768
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
769
770
771
772
773
        yield ArgsKwargs(image_loader, contrast_factor=_ADJUST_CONTRAST_FACTORS[0])


def reference_inputs_adjust_contrast_image_tensor():
    for image_loader, contrast_factor in itertools.product(
774
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
775
776
777
778
779
        _ADJUST_CONTRAST_FACTORS,
    ):
        yield ArgsKwargs(image_loader, contrast_factor=contrast_factor)


780
def sample_inputs_adjust_contrast_video():
781
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
782
783
784
785
786
787
        yield ArgsKwargs(video_loader, contrast_factor=_ADJUST_CONTRAST_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
788
            F.adjust_contrast_image,
789
790
            kernel_name="adjust_contrast_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_contrast_image_tensor,
791
            reference_fn=pil_reference_wrapper(F._adjust_contrast_image_pil),
792
            reference_inputs_fn=reference_inputs_adjust_contrast_image_tensor,
793
794
795
796
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(),
                **float32_vs_uint8_pixel_difference(2),
797
                **cuda_vs_cpu_pixel_difference(),
798
                (("TestKernels", "test_against_reference"), torch.uint8, "cpu"): pixel_difference_closeness_kwargs(1),
799
            },
800
801
802
803
        ),
        KernelInfo(
            F.adjust_contrast_video,
            sample_inputs_fn=sample_inputs_adjust_contrast_video,
804
805
806
807
            closeness_kwargs={
                **cuda_vs_cpu_pixel_difference(),
                (("TestKernels", "test_against_reference"), torch.uint8, "cpu"): pixel_difference_closeness_kwargs(1),
            },
808
809
        ),
    ]
810
811
812
813
814
815
816
817
818
819
)

_ADJUST_GAMMA_GAMMAS_GAINS = [
    (0.5, 2.0),
    (0.0, 1.0),
]


def sample_inputs_adjust_gamma_image_tensor():
    gamma, gain = _ADJUST_GAMMA_GAMMAS_GAINS[0]
820
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
821
822
823
824
825
        yield ArgsKwargs(image_loader, gamma=gamma, gain=gain)


def reference_inputs_adjust_gamma_image_tensor():
    for image_loader, (gamma, gain) in itertools.product(
826
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
827
828
829
830
831
        _ADJUST_GAMMA_GAMMAS_GAINS,
    ):
        yield ArgsKwargs(image_loader, gamma=gamma, gain=gain)


832
833
def sample_inputs_adjust_gamma_video():
    gamma, gain = _ADJUST_GAMMA_GAMMAS_GAINS[0]
834
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
835
836
837
838
839
840
        yield ArgsKwargs(video_loader, gamma=gamma, gain=gain)


KERNEL_INFOS.extend(
    [
        KernelInfo(
841
            F.adjust_gamma_image,
842
843
            kernel_name="adjust_gamma_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_gamma_image_tensor,
844
            reference_fn=pil_reference_wrapper(F._adjust_gamma_image_pil),
845
            reference_inputs_fn=reference_inputs_adjust_gamma_image_tensor,
846
847
848
849
850
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(),
                **float32_vs_uint8_pixel_difference(),
            },
851
852
853
854
855
856
        ),
        KernelInfo(
            F.adjust_gamma_video,
            sample_inputs_fn=sample_inputs_adjust_gamma_video,
        ),
    ]
857
858
859
860
861
862
863
)


_ADJUST_HUE_FACTORS = [-0.1, 0.5]


def sample_inputs_adjust_hue_image_tensor():
864
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
865
866
867
868
869
        yield ArgsKwargs(image_loader, hue_factor=_ADJUST_HUE_FACTORS[0])


def reference_inputs_adjust_hue_image_tensor():
    for image_loader, hue_factor in itertools.product(
870
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
871
872
873
874
875
        _ADJUST_HUE_FACTORS,
    ):
        yield ArgsKwargs(image_loader, hue_factor=hue_factor)


876
def sample_inputs_adjust_hue_video():
877
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
878
879
880
881
882
883
        yield ArgsKwargs(video_loader, hue_factor=_ADJUST_HUE_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
884
            F.adjust_hue_image,
885
886
            kernel_name="adjust_hue_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_hue_image_tensor,
887
            reference_fn=pil_reference_wrapper(F._adjust_hue_image_pil),
888
            reference_inputs_fn=reference_inputs_adjust_hue_image_tensor,
889
890
            float32_vs_uint8=True,
            closeness_kwargs={
891
                **pil_reference_pixel_difference(2, mae=True),
892
893
                **float32_vs_uint8_pixel_difference(),
            },
894
895
896
897
898
899
        ),
        KernelInfo(
            F.adjust_hue_video,
            sample_inputs_fn=sample_inputs_adjust_hue_video,
        ),
    ]
900
901
902
903
904
905
)

_ADJUST_SATURATION_FACTORS = [0.1, 0.5]


def sample_inputs_adjust_saturation_image_tensor():
906
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
907
908
909
910
911
        yield ArgsKwargs(image_loader, saturation_factor=_ADJUST_SATURATION_FACTORS[0])


def reference_inputs_adjust_saturation_image_tensor():
    for image_loader, saturation_factor in itertools.product(
912
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
913
914
915
916
917
        _ADJUST_SATURATION_FACTORS,
    ):
        yield ArgsKwargs(image_loader, saturation_factor=saturation_factor)


918
def sample_inputs_adjust_saturation_video():
919
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
920
921
922
923
924
925
        yield ArgsKwargs(video_loader, saturation_factor=_ADJUST_SATURATION_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
926
            F.adjust_saturation_image,
927
928
            kernel_name="adjust_saturation_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_saturation_image_tensor,
929
            reference_fn=pil_reference_wrapper(F._adjust_saturation_image_pil),
930
            reference_inputs_fn=reference_inputs_adjust_saturation_image_tensor,
931
932
933
934
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(),
                **float32_vs_uint8_pixel_difference(2),
935
                **cuda_vs_cpu_pixel_difference(),
936
            },
937
938
939
940
        ),
        KernelInfo(
            F.adjust_saturation_video,
            sample_inputs_fn=sample_inputs_adjust_saturation_video,
941
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
942
943
        ),
    ]
944
945
946
)


947
948
def sample_inputs_clamp_bounding_boxes():
    for bounding_boxes_loader in make_bounding_box_loaders():
949
        yield ArgsKwargs(
950
951
            bounding_boxes_loader,
            format=bounding_boxes_loader.format,
Philip Meier's avatar
Philip Meier committed
952
            canvas_size=bounding_boxes_loader.canvas_size,
953
954
955
956
957
        )


KERNEL_INFOS.append(
    KernelInfo(
958
959
        F.clamp_bounding_boxes,
        sample_inputs_fn=sample_inputs_clamp_bounding_boxes,
960
        logs_usage=True,
961
962
963
964
965
966
    )
)

_FIVE_TEN_CROP_SIZES = [7, (6,), [5], (6, 5), [7, 6]]


Philip Meier's avatar
Philip Meier committed
967
def _get_five_ten_crop_canvas_size(size):
968
969
970
971
972
973
974
975
976
977
978
    if isinstance(size, int):
        crop_height = crop_width = size
    elif len(size) == 1:
        crop_height = crop_width = size[0]
    else:
        crop_height, crop_width = size
    return 2 * crop_height, 2 * crop_width


def sample_inputs_five_crop_image_tensor():
    for size in _FIVE_TEN_CROP_SIZES:
979
        for image_loader in make_image_loaders(
Philip Meier's avatar
Philip Meier committed
980
            sizes=[_get_five_ten_crop_canvas_size(size)],
981
            color_spaces=["RGB"],
982
            dtypes=[torch.float32],
983
        ):
984
985
986
987
988
            yield ArgsKwargs(image_loader, size=size)


def reference_inputs_five_crop_image_tensor():
    for size in _FIVE_TEN_CROP_SIZES:
989
        for image_loader in make_image_loaders(
Philip Meier's avatar
Philip Meier committed
990
            sizes=[_get_five_ten_crop_canvas_size(size)], extra_dims=[()], dtypes=[torch.uint8]
991
        ):
992
993
994
            yield ArgsKwargs(image_loader, size=size)


995
996
def sample_inputs_five_crop_video():
    size = _FIVE_TEN_CROP_SIZES[0]
Philip Meier's avatar
Philip Meier committed
997
    for video_loader in make_video_loaders(sizes=[_get_five_ten_crop_canvas_size(size)]):
998
999
1000
        yield ArgsKwargs(video_loader, size=size)


1001
1002
def sample_inputs_ten_crop_image_tensor():
    for size, vertical_flip in itertools.product(_FIVE_TEN_CROP_SIZES, [False, True]):
1003
        for image_loader in make_image_loaders(
Philip Meier's avatar
Philip Meier committed
1004
            sizes=[_get_five_ten_crop_canvas_size(size)],
1005
            color_spaces=["RGB"],
1006
            dtypes=[torch.float32],
1007
        ):
1008
1009
1010
1011
1012
            yield ArgsKwargs(image_loader, size=size, vertical_flip=vertical_flip)


def reference_inputs_ten_crop_image_tensor():
    for size, vertical_flip in itertools.product(_FIVE_TEN_CROP_SIZES, [False, True]):
1013
        for image_loader in make_image_loaders(
Philip Meier's avatar
Philip Meier committed
1014
            sizes=[_get_five_ten_crop_canvas_size(size)], extra_dims=[()], dtypes=[torch.uint8]
1015
        ):
1016
1017
1018
            yield ArgsKwargs(image_loader, size=size, vertical_flip=vertical_flip)


1019
1020
def sample_inputs_ten_crop_video():
    size = _FIVE_TEN_CROP_SIZES[0]
Philip Meier's avatar
Philip Meier committed
1021
    for video_loader in make_video_loaders(sizes=[_get_five_ten_crop_canvas_size(size)]):
1022
1023
1024
        yield ArgsKwargs(video_loader, size=size)


1025
1026
1027
1028
def multi_crop_pil_reference_wrapper(pil_kernel):
    def wrapper(input_tensor, *other_args, **kwargs):
        output = pil_reference_wrapper(pil_kernel)(input_tensor, *other_args, **kwargs)
        return type(output)(
1029
            F.to_dtype_image(F.to_image(output_pil), dtype=input_tensor.dtype, scale=True) for output_pil in output
1030
1031
1032
1033
1034
        )

    return wrapper


1035
1036
1037
1038
1039
_common_five_ten_crop_marks = [
    xfail_jit_python_scalar_arg("size"),
    mark_framework_limitation(("TestKernels", "test_batched_vs_single"), "Custom batching needed."),
]

1040
1041
1042
KERNEL_INFOS.extend(
    [
        KernelInfo(
1043
            F.five_crop_image,
1044
            sample_inputs_fn=sample_inputs_five_crop_image_tensor,
1045
            reference_fn=multi_crop_pil_reference_wrapper(F._five_crop_image_pil),
1046
            reference_inputs_fn=reference_inputs_five_crop_image_tensor,
1047
            test_marks=_common_five_ten_crop_marks,
1048
        ),
1049
1050
1051
1052
1053
        KernelInfo(
            F.five_crop_video,
            sample_inputs_fn=sample_inputs_five_crop_video,
            test_marks=_common_five_ten_crop_marks,
        ),
1054
        KernelInfo(
1055
            F.ten_crop_image,
1056
            sample_inputs_fn=sample_inputs_ten_crop_image_tensor,
1057
            reference_fn=multi_crop_pil_reference_wrapper(F._ten_crop_image_pil),
1058
            reference_inputs_fn=reference_inputs_ten_crop_image_tensor,
1059
            test_marks=_common_five_ten_crop_marks,
1060
        ),
1061
1062
1063
1064
1065
        KernelInfo(
            F.ten_crop_video,
            sample_inputs_fn=sample_inputs_ten_crop_video,
            test_marks=_common_five_ten_crop_marks,
        ),
1066
1067
1068
1069
1070
1071
    ]
)

_NORMALIZE_MEANS_STDS = [
    ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
    ([0.0, 0.0, 0.0], [1.0, 1.0, 1.0]),
1072
    (0.5, 2.0),
1073
1074
1075
1076
1077
]


def sample_inputs_normalize_image_tensor():
    for image_loader, (mean, std) in itertools.product(
1078
        make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=["RGB"], dtypes=[torch.float32]),
1079
1080
1081
1082
1083
        _NORMALIZE_MEANS_STDS,
    ):
        yield ArgsKwargs(image_loader, mean=mean, std=std)


1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
def reference_normalize_image_tensor(image, mean, std, inplace=False):
    mean = torch.tensor(mean).view(-1, 1, 1)
    std = torch.tensor(std).view(-1, 1, 1)

    sub = torch.Tensor.sub_ if inplace else torch.Tensor.sub
    return sub(image, mean).div_(std)


def reference_inputs_normalize_image_tensor():
    yield ArgsKwargs(
1094
        make_image_loader(size=(32, 32), color_space="RGB", extra_dims=[1]),
1095
1096
1097
1098
1099
        mean=[0.5, 0.5, 0.5],
        std=[1.0, 1.0, 1.0],
    )


1100
1101
1102
def sample_inputs_normalize_video():
    mean, std = _NORMALIZE_MEANS_STDS[0]
    for video_loader in make_video_loaders(
1103
        sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=["RGB"], num_frames=[3], dtypes=[torch.float32]
1104
1105
1106
1107
1108
1109
1110
    ):
        yield ArgsKwargs(video_loader, mean=mean, std=std)


KERNEL_INFOS.extend(
    [
        KernelInfo(
1111
            F.normalize_image,
1112
1113
            kernel_name="normalize_image_tensor",
            sample_inputs_fn=sample_inputs_normalize_image_tensor,
1114
1115
            reference_fn=reference_normalize_image_tensor,
            reference_inputs_fn=reference_inputs_normalize_image_tensor,
1116
1117
1118
1119
            test_marks=[
                xfail_jit_python_scalar_arg("mean"),
                xfail_jit_python_scalar_arg("std"),
            ],
1120
1121
1122
1123
1124
1125
        ),
        KernelInfo(
            F.normalize_video,
            sample_inputs_fn=sample_inputs_normalize_video,
        ),
    ]
1126
)
1127
1128


1129
def sample_inputs_uniform_temporal_subsample_video():
1130
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[4]):
1131
        yield ArgsKwargs(video_loader, num_samples=2)
1132
1133


1134
def reference_uniform_temporal_subsample_video(x, num_samples):
1135
1136
    # Copy-pasted from
    # https://github.com/facebookresearch/pytorchvideo/blob/c8d23d8b7e597586a9e2d18f6ed31ad8aa379a7a/pytorchvideo/transforms/functional.py#L19
1137
    t = x.shape[-4]
1138
1139
1140
1141
    assert num_samples > 0 and t > 0
    # Sample by nearest neighbor interpolation if num_samples > t.
    indices = torch.linspace(0, t - 1, num_samples)
    indices = torch.clamp(indices, 0, t - 1).long()
1142
    return torch.index_select(x, -4, indices)
1143
1144
1145


def reference_inputs_uniform_temporal_subsample_video():
1146
1147
1148
    for video_loader in make_video_loaders(
        sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=["RGB"], num_frames=[10]
    ):
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
        for num_samples in range(1, video_loader.shape[-4] + 1):
            yield ArgsKwargs(video_loader, num_samples)


KERNEL_INFOS.append(
    KernelInfo(
        F.uniform_temporal_subsample_video,
        sample_inputs_fn=sample_inputs_uniform_temporal_subsample_video,
        reference_fn=reference_uniform_temporal_subsample_video,
        reference_inputs_fn=reference_inputs_uniform_temporal_subsample_video,
    )
)