shufflenetv2.py 15.4 KB
Newer Older
1
from functools import partial
2
from typing import Any, Callable, List, Optional
3

Bar's avatar
Bar committed
4
5
import torch
import torch.nn as nn
6
7
from torch import Tensor

8
from ..transforms._presets import ImageClassification
9
from ..utils import _log_api_usage_once
10
from ._api import register_model, Weights, WeightsEnum
11
from ._meta import _IMAGENET_CATEGORIES
12
from ._utils import _ovewrite_named_param, handle_legacy_interface
Bar's avatar
Bar committed
13

14

15
16
17
18
19
20
21
22
23
24
25
__all__ = [
    "ShuffleNetV2",
    "ShuffleNet_V2_X0_5_Weights",
    "ShuffleNet_V2_X1_0_Weights",
    "ShuffleNet_V2_X1_5_Weights",
    "ShuffleNet_V2_X2_0_Weights",
    "shufflenet_v2_x0_5",
    "shufflenet_v2_x1_0",
    "shufflenet_v2_x1_5",
    "shufflenet_v2_x2_0",
]
Bar's avatar
Bar committed
26
27


28
def channel_shuffle(x: Tensor, groups: int) -> Tensor:
29
    batchsize, num_channels, height, width = x.size()
Bar's avatar
Bar committed
30
31
32
    channels_per_group = num_channels // groups

    # reshape
33
    x = x.view(batchsize, groups, channels_per_group, height, width)
Bar's avatar
Bar committed
34
35
36
37
38
39
40
41
42
43

    x = torch.transpose(x, 1, 2).contiguous()

    # flatten
    x = x.view(batchsize, -1, height, width)

    return x


class InvertedResidual(nn.Module):
44
    def __init__(self, inp: int, oup: int, stride: int) -> None:
45
        super().__init__()
Bar's avatar
Bar committed
46
47

        if not (1 <= stride <= 3):
48
            raise ValueError("illegal stride value")
Bar's avatar
Bar committed
49
50
51
        self.stride = stride

        branch_features = oup // 2
52
53
54
55
        if (self.stride == 1) and (inp != branch_features << 1):
            raise ValueError(
                f"Invalid combination of stride {stride}, inp {inp} and oup {oup} values. If stride == 1 then inp should be equal to oup // 2 << 1."
            )
Bar's avatar
Bar committed
56
57
58

        if self.stride > 1:
            self.branch1 = nn.Sequential(
59
                self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
Bar's avatar
Bar committed
60
                nn.BatchNorm2d(inp),
61
                nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
Bar's avatar
Bar committed
62
63
64
                nn.BatchNorm2d(branch_features),
                nn.ReLU(inplace=True),
            )
65
66
        else:
            self.branch1 = nn.Sequential()
Bar's avatar
Bar committed
67
68

        self.branch2 = nn.Sequential(
69
70
71
72
73
74
75
76
            nn.Conv2d(
                inp if (self.stride > 1) else branch_features,
                branch_features,
                kernel_size=1,
                stride=1,
                padding=0,
                bias=False,
            ),
Bar's avatar
Bar committed
77
78
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
79
            self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
Bar's avatar
Bar committed
80
            nn.BatchNorm2d(branch_features),
81
            nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
Bar's avatar
Bar committed
82
83
84
85
86
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
        )

    @staticmethod
87
    def depthwise_conv(
88
        i: int, o: int, kernel_size: int, stride: int = 1, padding: int = 0, bias: bool = False
89
    ) -> nn.Conv2d:
Bar's avatar
Bar committed
90
91
        return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)

92
    def forward(self, x: Tensor) -> Tensor:
Bar's avatar
Bar committed
93
94
95
96
97
98
99
100
101
102
103
104
        if self.stride == 1:
            x1, x2 = x.chunk(2, dim=1)
            out = torch.cat((x1, self.branch2(x2)), dim=1)
        else:
            out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)

        out = channel_shuffle(out, 2)

        return out


class ShuffleNetV2(nn.Module):
105
106
107
108
109
    def __init__(
        self,
        stages_repeats: List[int],
        stages_out_channels: List[int],
        num_classes: int = 1000,
110
        inverted_residual: Callable[..., nn.Module] = InvertedResidual,
111
    ) -> None:
112
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
113
        _log_api_usage_once(self)
Bar's avatar
Bar committed
114

Bar's avatar
Bar committed
115
        if len(stages_repeats) != 3:
116
            raise ValueError("expected stages_repeats as list of 3 positive ints")
Bar's avatar
Bar committed
117
        if len(stages_out_channels) != 5:
118
            raise ValueError("expected stages_out_channels as list of 5 positive ints")
Bar's avatar
Bar committed
119
        self._stage_out_channels = stages_out_channels
ekka's avatar
ekka committed
120

Bar's avatar
Bar committed
121
122
        input_channels = 3
        output_channels = self._stage_out_channels[0]
Bar's avatar
Bar committed
123
124
125
126
127
128
129
130
131
        self.conv1 = nn.Sequential(
            nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False),
            nn.BatchNorm2d(output_channels),
            nn.ReLU(inplace=True),
        )
        input_channels = output_channels

        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

132
133
134
135
        # Static annotations for mypy
        self.stage2: nn.Sequential
        self.stage3: nn.Sequential
        self.stage4: nn.Sequential
136
        stage_names = [f"stage{i}" for i in [2, 3, 4]]
137
        for name, repeats, output_channels in zip(stage_names, stages_repeats, self._stage_out_channels[1:]):
138
            seq = [inverted_residual(input_channels, output_channels, 2)]
Bar's avatar
Bar committed
139
            for i in range(repeats - 1):
140
                seq.append(inverted_residual(output_channels, output_channels, 1))
Bar's avatar
Bar committed
141
142
143
            setattr(self, name, nn.Sequential(*seq))
            input_channels = output_channels

Bar's avatar
Bar committed
144
        output_channels = self._stage_out_channels[-1]
Bar's avatar
Bar committed
145
146
147
148
149
150
151
152
        self.conv5 = nn.Sequential(
            nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False),
            nn.BatchNorm2d(output_channels),
            nn.ReLU(inplace=True),
        )

        self.fc = nn.Linear(output_channels, num_classes)

153
    def _forward_impl(self, x: Tensor) -> Tensor:
154
        # See note [TorchScript super()]
Bar's avatar
Bar committed
155
156
157
158
159
160
161
162
163
164
        x = self.conv1(x)
        x = self.maxpool(x)
        x = self.stage2(x)
        x = self.stage3(x)
        x = self.stage4(x)
        x = self.conv5(x)
        x = x.mean([2, 3])  # globalpool
        x = self.fc(x)
        return x

165
    def forward(self, x: Tensor) -> Tensor:
166
        return self._forward_impl(x)
167

Bar's avatar
Bar committed
168

169
170
171
172
173
174
175
176
177
def _shufflenetv2(
    weights: Optional[WeightsEnum],
    progress: bool,
    *args: Any,
    **kwargs: Any,
) -> ShuffleNetV2:
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

Bar's avatar
Bar committed
178
    model = ShuffleNetV2(*args, **kwargs)
Bar's avatar
Bar committed
179

180
181
    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))
Bar's avatar
Bar committed
182
183
184
185

    return model


186
187
188
_COMMON_META = {
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
189
    "recipe": "https://github.com/ericsun99/Shufflenet-v2-Pytorch",
190
191
192
193
194
}


class ShuffleNet_V2_X0_5_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
195
        # Weights ported from https://github.com/ericsun99/Shufflenet-v2-Pytorch
196
197
198
199
200
        url="https://download.pytorch.org/models/shufflenetv2_x0.5-f707e7126e.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 1366792,
201
202
203
204
205
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 60.552,
                    "acc@5": 81.746,
                }
206
            },
207
208
            "_ops": 0.04,
            "_weight_size": 5.282,
209
            "_docs": """These weights were trained from scratch to reproduce closely the results of the paper.""",
210
211
212
213
214
215
216
        },
    )
    DEFAULT = IMAGENET1K_V1


class ShuffleNet_V2_X1_0_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
217
        # Weights ported from https://github.com/ericsun99/Shufflenet-v2-Pytorch
218
219
220
221
222
        url="https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 2278604,
223
224
225
226
227
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 69.362,
                    "acc@5": 88.316,
                }
228
            },
229
230
            "_ops": 0.145,
            "_weight_size": 8.791,
231
            "_docs": """These weights were trained from scratch to reproduce closely the results of the paper.""",
232
233
234
235
236
237
        },
    )
    DEFAULT = IMAGENET1K_V1


class ShuffleNet_V2_X1_5_Weights(WeightsEnum):
238
239
240
241
242
243
244
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/shufflenetv2_x1_5-3c479a10.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/pytorch/vision/pull/5906",
            "num_params": 3503624,
245
246
247
248
249
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 72.996,
                    "acc@5": 91.086,
                }
250
            },
251
252
            "_ops": 0.296,
            "_weight_size": 13.557,
253
254
255
256
            "_docs": """
                These weights were trained from scratch by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
257
258
259
        },
    )
    DEFAULT = IMAGENET1K_V1
260
261
262


class ShuffleNet_V2_X2_0_Weights(WeightsEnum):
263
264
265
266
267
268
269
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/shufflenetv2_x2_0-8be3c8ee.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/pytorch/vision/pull/5906",
            "num_params": 7393996,
270
271
272
273
274
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 76.230,
                    "acc@5": 93.006,
                }
275
            },
276
277
            "_ops": 0.583,
            "_weight_size": 28.433,
278
279
280
281
            "_docs": """
                These weights were trained from scratch by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
282
283
284
        },
    )
    DEFAULT = IMAGENET1K_V1
285
286


287
@register_model()
288
289
290
291
@handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1))
def shufflenet_v2_x0_5(
    *, weights: Optional[ShuffleNet_V2_X0_5_Weights] = None, progress: bool = True, **kwargs: Any
) -> ShuffleNetV2:
292
    """
293
294
295
    Constructs a ShuffleNetV2 architecture with 0.5x output channels, as described in
    `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    <https://arxiv.org/abs/1807.11164>`__.
296
297

    Args:
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        weights (:class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ShuffleNet_V2_X0_5_Weights
        :members:
312
    """
313
    weights = ShuffleNet_V2_X0_5_Weights.verify(weights)
Bar's avatar
Bar committed
314

315
    return _shufflenetv2(weights, progress, [4, 8, 4], [24, 48, 96, 192, 1024], **kwargs)
Bar's avatar
Bar committed
316

317

318
@register_model()
319
320
321
322
@handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1))
def shufflenet_v2_x1_0(
    *, weights: Optional[ShuffleNet_V2_X1_0_Weights] = None, progress: bool = True, **kwargs: Any
) -> ShuffleNetV2:
323
    """
324
325
326
    Constructs a ShuffleNetV2 architecture with 1.0x output channels, as described in
    `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    <https://arxiv.org/abs/1807.11164>`__.
327
328

    Args:
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        weights (:class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ShuffleNet_V2_X1_0_Weights
        :members:
343
    """
344
345
346
    weights = ShuffleNet_V2_X1_0_Weights.verify(weights)

    return _shufflenetv2(weights, progress, [4, 8, 4], [24, 116, 232, 464, 1024], **kwargs)
Bar's avatar
Bar committed
347
348


349
@register_model()
350
@handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1))
351
352
353
def shufflenet_v2_x1_5(
    *, weights: Optional[ShuffleNet_V2_X1_5_Weights] = None, progress: bool = True, **kwargs: Any
) -> ShuffleNetV2:
354
    """
355
356
357
    Constructs a ShuffleNetV2 architecture with 1.5x output channels, as described in
    `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    <https://arxiv.org/abs/1807.11164>`__.
358
359

    Args:
360
361
362
363
364
365
366
367
368
369
370
371
372
373
        weights (:class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ShuffleNet_V2_X1_5_Weights
        :members:
374
    """
375
    weights = ShuffleNet_V2_X1_5_Weights.verify(weights)
Bar's avatar
Bar committed
376

377
    return _shufflenetv2(weights, progress, [4, 8, 4], [24, 176, 352, 704, 1024], **kwargs)
Bar's avatar
Bar committed
378

379

380
@register_model()
381
@handle_legacy_interface(weights=("pretrained", ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1))
382
383
384
def shufflenet_v2_x2_0(
    *, weights: Optional[ShuffleNet_V2_X2_0_Weights] = None, progress: bool = True, **kwargs: Any
) -> ShuffleNetV2:
385
    """
386
387
388
    Constructs a ShuffleNetV2 architecture with 2.0x output channels, as described in
    `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    <https://arxiv.org/abs/1807.11164>`__.
389
390

    Args:
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        weights (:class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.shufflenetv2.ShuffleNetV2``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ShuffleNet_V2_X2_0_Weights
        :members:
405
    """
406
407
408
    weights = ShuffleNet_V2_X2_0_Weights.verify(weights)

    return _shufflenetv2(weights, progress, [4, 8, 4], [24, 244, 488, 976, 2048], **kwargs)
409
410
411
412
413
414
415
416
417
418
419
420
421
422


# The dictionary below is internal implementation detail and will be removed in v0.15
from ._utils import _ModelURLs


model_urls = _ModelURLs(
    {
        "shufflenetv2_x0.5": ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1.url,
        "shufflenetv2_x1.0": ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1.url,
        "shufflenetv2_x1.5": None,
        "shufflenetv2_x2.0": None,
    }
)