widerface.py 8 KB
Newer Older
Josh Bradley's avatar
Josh Bradley committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
from PIL import Image
import os
from os.path import abspath, expanduser
import torch
from typing import Any, Callable, List, Dict, Optional, Tuple, Union
from .utils import check_integrity, download_file_from_google_drive, \
    download_and_extract_archive, extract_archive, verify_str_arg
from .vision import VisionDataset


class WIDERFace(VisionDataset):
    """`WIDERFace <http://shuoyang1213.me/WIDERFACE/>`_ Dataset.

    Args:
        root (string): Root directory where images and annotations are downloaded to.
            Expects the following folder structure if download=False:
17
18
19

            .. code::

Josh Bradley's avatar
Josh Bradley committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
                <root>
                    └── widerface
                        ├── wider_face_split ('wider_face_split.zip' if compressed)
                        ├── WIDER_train ('WIDER_train.zip' if compressed)
                        ├── WIDER_val ('WIDER_val.zip' if compressed)
                        └── WIDER_test ('WIDER_test.zip' if compressed)
        split (string): The dataset split to use. One of {``train``, ``val``, ``test``}.
            Defaults to ``train``.
        transform (callable, optional): A function/transform that  takes in a PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.
35

Josh Bradley's avatar
Josh Bradley committed
36
37
38
39
    """

    BASE_FOLDER = "widerface"
    FILE_LIST = [
Aditya Oke's avatar
Aditya Oke committed
40
        # File ID                             MD5 Hash                          Filename
Josh Bradley's avatar
Josh Bradley committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        ("0B6eKvaijfFUDQUUwd21EckhUbWs", "3fedf70df600953d25982bcd13d91ba2", "WIDER_train.zip"),
        ("0B6eKvaijfFUDd3dIRmpvSk8tLUk", "dfa7d7e790efa35df3788964cf0bbaea", "WIDER_val.zip"),
        ("0B6eKvaijfFUDbW4tdGpaYjgzZkU", "e5d8f4248ed24c334bbd12f49c29dd40", "WIDER_test.zip")
    ]
    ANNOTATIONS_FILE = (
        "http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/support/bbx_annotation/wider_face_split.zip",
        "0e3767bcf0e326556d407bf5bff5d27c",
        "wider_face_split.zip"
    )

    def __init__(
            self,
            root: str,
            split: str = "train",
            transform: Optional[Callable] = None,
            target_transform: Optional[Callable] = None,
            download: bool = False,
    ) -> None:
        super(WIDERFace, self).__init__(root=os.path.join(root, self.BASE_FOLDER),
                                        transform=transform,
                                        target_transform=target_transform)
        # check arguments
        self.split = verify_str_arg(split, "split", ("train", "val", "test"))

        if download:
            self.download()

        if not self._check_integrity():
            raise RuntimeError("Dataset not found or corrupted. " +
                               "You can use download=True to download and prepare it")

        self.img_info: List[Dict[str, Union[str, Dict[str, torch.Tensor]]]] = []
        if self.split in ("train", "val"):
            self.parse_train_val_annotations_file()
        else:
            self.parse_test_annotations_file()

    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is a dict of annotations for all faces in the image.
            target=None for the test split.
        """

        # stay consistent with other datasets and return a PIL Image
        img = Image.open(self.img_info[index]["img_path"])

        if self.transform is not None:
            img = self.transform(img)

        target = None if self.split == "test" else self.img_info[index]["annotations"]
        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self) -> int:
        return len(self.img_info)

    def extra_repr(self) -> str:
        lines = ["Split: {split}"]
        return '\n'.join(lines).format(**self.__dict__)

    def parse_train_val_annotations_file(self) -> None:
        filename = "wider_face_train_bbx_gt.txt" if self.split == "train" else "wider_face_val_bbx_gt.txt"
        filepath = os.path.join(self.root, "wider_face_split", filename)

        with open(filepath, "r") as f:
            lines = f.readlines()
            file_name_line, num_boxes_line, box_annotation_line = True, False, False
            num_boxes, box_counter = 0, 0
            labels = []
            for line in lines:
                line = line.rstrip()
                if file_name_line:
                    img_path = os.path.join(self.root, "WIDER_" + self.split, "images", line)
                    img_path = abspath(expanduser(img_path))
                    file_name_line = False
                    num_boxes_line = True
                elif num_boxes_line:
                    num_boxes = int(line)
                    num_boxes_line = False
                    box_annotation_line = True
                elif box_annotation_line:
                    box_counter += 1
                    line_split = line.split(" ")
                    line_values = [int(x) for x in line_split]
                    labels.append(line_values)
                    if box_counter >= num_boxes:
                        box_annotation_line = False
                        file_name_line = True
                        labels_tensor = torch.tensor(labels)
                        self.img_info.append({
                            "img_path": img_path,
                            "annotations": {"bbox": labels_tensor[:, 0:4],  # x, y, width, height
                                            "blur": labels_tensor[:, 4],
                                            "expression": labels_tensor[:, 5],
                                            "illumination": labels_tensor[:, 6],
                                            "occlusion": labels_tensor[:, 7],
                                            "pose": labels_tensor[:, 8],
                                            "invalid": labels_tensor[:, 9]}
                        })
                        box_counter = 0
                        labels.clear()
                else:
                    raise RuntimeError("Error parsing annotation file {}".format(filepath))

    def parse_test_annotations_file(self) -> None:
        filepath = os.path.join(self.root, "wider_face_split", "wider_face_test_filelist.txt")
        filepath = abspath(expanduser(filepath))
        with open(filepath, "r") as f:
            lines = f.readlines()
            for line in lines:
                line = line.rstrip()
                img_path = os.path.join(self.root, "WIDER_test", "images", line)
                img_path = abspath(expanduser(img_path))
                self.img_info.append({"img_path": img_path})

    def _check_integrity(self) -> bool:
        # Allow original archive to be deleted (zip). Only need the extracted images
        all_files = self.FILE_LIST.copy()
        all_files.append(self.ANNOTATIONS_FILE)
        for (_, md5, filename) in all_files:
            file, ext = os.path.splitext(filename)
            extracted_dir = os.path.join(self.root, file)
            if not os.path.exists(extracted_dir):
                return False
        return True

    def download(self) -> None:
        if self._check_integrity():
            print('Files already downloaded and verified')
            return

        # download and extract image data
        for (file_id, md5, filename) in self.FILE_LIST:
            download_file_from_google_drive(file_id, self.root, filename, md5)
            filepath = os.path.join(self.root, filename)
            extract_archive(filepath)

        # download and extract annotation files
        download_and_extract_archive(url=self.ANNOTATIONS_FILE[0],
                                     download_root=self.root,
                                     md5=self.ANNOTATIONS_FILE[1])