test_models.py 24.7 KB
Newer Older
1
2
import os
import io
3
import sys
4
from common_utils import map_nested_tensor_object, freeze_rng_state, set_rng_seed, cpu_and_gpu, needs_cuda
5
from _utils_internal import get_relative_path
6
from collections import OrderedDict
7
8
import functools
import operator
9
import torch
10
import torch.fx
11
import torch.nn as nn
12
import torchvision
13
from torchvision import models
14
import pytest
Anirudh's avatar
Anirudh committed
15
import warnings
16
import traceback
17

eellison's avatar
eellison committed
18

19
20
21
ACCEPT = os.getenv('EXPECTTEST_ACCEPT', '0') == '1'


22
23
24
def get_available_classification_models():
    # TODO add a registration mechanism to torchvision.models
    return [k for k, v in models.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]
25
26
27
28
29


def get_available_segmentation_models():
    # TODO add a registration mechanism to torchvision.models
    return [k for k, v in models.segmentation.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]
30
31


32
33
34
35
36
def get_available_detection_models():
    # TODO add a registration mechanism to torchvision.models
    return [k for k, v in models.detection.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]


37
38
39
40
41
def get_available_video_models():
    # TODO add a registration mechanism to torchvision.models
    return [k for k, v in models.video.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]


42
43
44
45
46
def get_available_quantizable_models():
    # TODO add a registration mechanism to torchvision.models
    return [k for k, v in models.quantization.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]


47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
    expected_file = expected_file = os.path.join(expected_file_base, 'ModelTester.test_' + name)
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


def _assert_expected(output, name, prec):
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
        print("Accepting updated output for {}:\n\n{}".format(filename, output))
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
            raise RuntimeError("The output for {}, is larger than 50kb".format(filename))
    else:
        expected = torch.load(expected_file)
        rtol = atol = prec
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False)


def _check_jit_scriptable(nn_module, args, unwrapper=None, skip=False):
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

    def assert_export_import_module(m, args):
        """Check that the results of a model are the same after saving and loading"""
        def get_export_import_copy(m):
            """Save and load a TorchScript model"""
            buffer = io.BytesIO()
            torch.jit.save(m, buffer)
            buffer.seek(0)
            imported = torch.jit.load(buffer)
            return imported

        m_import = get_export_import_copy(m)
        with freeze_rng_state():
            results = m(*args)
        with freeze_rng_state():
            results_from_imported = m_import(*args)
        tol = 3e-4
        try:
            torch.testing.assert_close(results, results_from_imported, atol=tol, rtol=tol)
111
        except torch.testing._asserts.UsageError:
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
            # custom check for the models that return named tuples:
            # we compare field by field while ignoring None as assert_close can't handle None
            for a, b in zip(results, results_from_imported):
                if a is not None:
                    torch.testing.assert_close(a, b, atol=tol, rtol=tol)

    TEST_WITH_SLOW = os.getenv('PYTORCH_TEST_WITH_SLOW', '0') == '1'
    if not TEST_WITH_SLOW or skip:
        # TorchScript is not enabled, skip these tests
        msg = "The check_jit_scriptable test for {} was skipped. " \
              "This test checks if the module's results in TorchScript " \
              "match eager and that it can be exported. To run these " \
              "tests make sure you set the environment variable " \
              "PYTORCH_TEST_WITH_SLOW=1 and that the test is not " \
              "manually skipped.".format(nn_module.__class__.__name__)
        warnings.warn(msg, RuntimeWarning)
        return None

    sm = torch.jit.script(nn_module)

    with freeze_rng_state():
        eager_out = nn_module(*args)

    with freeze_rng_state():
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
    assert_export_import_module(sm, args)


144
145
146
147
148
149
150
def _check_fx_compatible(model, inputs):
    model_fx = torch.fx.symbolic_trace(model)
    out = model(inputs)
    out_fx = model_fx(inputs)
    torch.testing.assert_close(out, out_fx)


151
152
153
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
154
155
156
157
script_model_unwrapper = {
    'googlenet': lambda x: x.logits,
    'inception_v3': lambda x: x.logits,
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
158
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
159
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
160
161
162
    "maskrcnn_resnet50_fpn": lambda x: x[1],
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
163
    "ssd300_vgg16": lambda x: x[1],
164
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
165
}
166
167


168
169
170
171
172
173
174
175
176
177
178
179
180
181
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
182
183
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
184
    "deeplabv3_mobilenet_v3_large",
185
186
    "fcn_resnet50",
    "fcn_resnet101",
187
    "lraspp_mobilenet_v3_large",
188
    "maskrcnn_resnet50_fpn",
189
190
191
)


192
193
194
195
196
197
198
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
    'inception_v3': {
        'input_shape': (1, 3, 299, 299)
    },
    'retinanet_resnet50_fpn': {
199
        'num_classes': 20,
200
        'score_thresh': 0.01,
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
        'min_size': 224,
        'max_size': 224,
        'input_shape': (3, 224, 224),
    },
    'keypointrcnn_resnet50_fpn': {
        'num_classes': 2,
        'min_size': 224,
        'max_size': 224,
        'box_score_thresh': 0.15,
        'input_shape': (3, 224, 224),
    },
    'fasterrcnn_resnet50_fpn': {
        'num_classes': 20,
        'min_size': 224,
        'max_size': 224,
        'input_shape': (3, 224, 224),
    },
    'maskrcnn_resnet50_fpn': {
        'num_classes': 10,
        'min_size': 224,
        'max_size': 224,
        'input_shape': (3, 224, 224),
223
224
225
226
227
228
229
230
231
232
233
234
    },
    'fasterrcnn_mobilenet_v3_large_fpn': {
        'box_score_thresh': 0.02076,
    },
    'fasterrcnn_mobilenet_v3_large_320_fpn': {
        'box_score_thresh': 0.02076,
        'rpn_pre_nms_top_n_test': 1000,
        'rpn_post_nms_top_n_test': 1000,
    }
}


Anirudh's avatar
Anirudh committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


@pytest.mark.parametrize('model_name', ['densenet121', 'densenet169', 'densenet201', 'densenet161'])
def test_memory_efficient_densenet(model_name):
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

    model1 = models.__dict__[model_name](num_classes=50, memory_efficient=True)
    params = model1.state_dict()
    num_params = sum([x.numel() for x in model1.parameters()])
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
    num_grad = sum([x.grad.numel() for x in model1.parameters() if x.grad is not None])

    model2 = models.__dict__[model_name](num_classes=50, memory_efficient=False)
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)


@pytest.mark.parametrize('dilate_layer_2', (True, False))
@pytest.mark.parametrize('dilate_layer_3', (True, False))
@pytest.mark.parametrize('dilate_layer_4', (True, False))
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
    model = models.__dict__["resnet50"](replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
    model = models.__dict__["mobilenet_v2"](inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


@pytest.mark.parametrize('model_name', ["mobilenet_v2", "mobilenet_v3_large", "mobilenet_v3_small"])
def test_mobilenet_norm_layer(model_name):
    model = models.__dict__[model_name]()
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
        return nn.GroupNorm(32, num_channels)

    model = models.__dict__[model_name](norm_layer=get_gn)
    assert not(any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    # replacement for models.inception_v3(pretrained=True) that does not download weights
    kwargs = {}
    kwargs['transform_input'] = True
    kwargs['aux_logits'] = True
    kwargs['init_weights'] = False
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))


def test_fasterrcnn_double():
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False)
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]


def test_googlenet_eval():
    # replacement for models.googlenet(pretrained=True) that does not download weights
    kwargs = {}
    kwargs['transform_input'] = True
    kwargs['aux_logits'] = True
    kwargs['init_weights'] = False
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False)
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, device='cuda')
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
368
        out = model(model_input)
369

Anirudh's avatar
Anirudh committed
370
    checkOut(out)
371

Anirudh's avatar
Anirudh committed
372
373
374
375
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
376

Anirudh's avatar
Anirudh committed
377
    checkOut(out_cpu)
378
379


Anirudh's avatar
Anirudh committed
380
def test_generalizedrcnn_transform_repr():
381

Anirudh's avatar
Anirudh committed
382
383
384
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
385

Anirudh's avatar
Anirudh committed
386
387
388
389
    t = models.detection.transform.GeneralizedRCNNTransform(min_size=min_size,
                                                            max_size=max_size,
                                                            image_mean=image_mean,
                                                            image_std=image_std)
390

Anirudh's avatar
Anirudh committed
391
392
393
394
395
396
397
    # Check integrity of object __repr__ attribute
    expected_string = 'GeneralizedRCNNTransform('
    _indent = '\n    '
    expected_string += '{0}Normalize(mean={1}, std={2})'.format(_indent, image_mean, image_std)
    expected_string += '{0}Resize(min_size=({1},), max_size={2}, '.format(_indent, min_size, max_size)
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
398
399


400
@pytest.mark.parametrize('model_name', get_available_classification_models())
Anirudh's avatar
Anirudh committed
401
@pytest.mark.parametrize('dev', cpu_and_gpu())
402
def test_classification_model(model_name, dev):
Anirudh's avatar
Anirudh committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    set_rng_seed(0)
    defaults = {
        'num_classes': 50,
        'input_shape': (1, 3, 224, 224),
    }
    kwargs = {**defaults, **_model_params.get(model_name, {})}
    input_shape = kwargs.pop('input_shape')

    model = models.__dict__[model_name](**kwargs)
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _assert_expected(out.cpu(), model_name, prec=0.1)
    assert out.shape[-1] == 50
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
419
    _check_fx_compatible(model, x)
Anirudh's avatar
Anirudh committed
420
421
422
423
424
425
426
427

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
428
429


430
@pytest.mark.parametrize('model_name', get_available_segmentation_models())
Anirudh's avatar
Anirudh committed
431
@pytest.mark.parametrize('dev', cpu_and_gpu())
432
def test_segmentation_model(model_name, dev):
Anirudh's avatar
Anirudh committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    set_rng_seed(0)
    defaults = {
        'num_classes': 10,
        'pretrained_backbone': False,
        'input_shape': (1, 3, 32, 32),
    }
    kwargs = {**defaults, **_model_params.get(model_name, {})}
    input_shape = kwargs.pop('input_shape')

    model = models.segmentation.__dict__[model_name](**kwargs)
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)["out"]

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
            torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec)
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)

    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)["out"]
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
        msg = "The output of {} could only be partially validated. " \
              "This is likely due to unit-test flakiness, but you may " \
              "want to do additional manual checks if you made " \
              "significant changes to the codebase.".format(test_segmentation_model.__name__)
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
484

485

486
@pytest.mark.parametrize('model_name', get_available_detection_models())
Anirudh's avatar
Anirudh committed
487
@pytest.mark.parametrize('dev', cpu_and_gpu())
488
def test_detection_model(model_name, dev):
Anirudh's avatar
Anirudh committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
    set_rng_seed(0)
    defaults = {
        'num_classes': 50,
        'pretrained_backbone': False,
        'input_shape': (3, 300, 300),
    }
    kwargs = {**defaults, **_model_params.get(model_name, {})}
    input_shape = kwargs.pop('input_shape')

    model = models.detection.__dict__[model_name](**kwargs)
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    def check_out(out):
        assert len(out) == 1

        def compact(tensor):
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
            return tensor[ith_index - 1::ith_index]

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
            torch.testing.assert_close(output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec,
                                       check_device=False, check_dtype=False)

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None))

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
        msg = "The output of {} could only be partially validated. " \
              "This is likely due to unit-test flakiness, but you may " \
              "want to do additional manual checks if you made " \
              "significant changes to the codebase.".format(test_detection_model.__name__)
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
575

576

577
578
@pytest.mark.parametrize('model_name', get_available_detection_models())
def test_detection_model_validation(model_name):
Anirudh's avatar
Anirudh committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
    set_rng_seed(0)
    model = models.detection.__dict__[model_name](num_classes=50, pretrained_backbone=False)
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
    with pytest.raises(ValueError):
        model(x)

    # validate type
    targets = [{'boxes': 0.}]
    with pytest.raises(ValueError):
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
        targets = [{'boxes': boxes}]
        with pytest.raises(ValueError):
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
    targets = [{'boxes': boxes}]
    with pytest.raises(ValueError):
        model(x, targets=targets)
604

605

606
@pytest.mark.parametrize('model_name', get_available_video_models())
Anirudh's avatar
Anirudh committed
607
@pytest.mark.parametrize('dev', cpu_and_gpu())
608
def test_video_model(model_name, dev):
Anirudh's avatar
Anirudh committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
    # the default input shape is
    # bs * num_channels * clip_len * h *w
    input_shape = (1, 3, 4, 112, 112)
    # test both basicblock and Bottleneck
    model = models.video.__dict__[model_name](num_classes=50)
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
    assert out.shape[-1] == 50

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            assert out.shape[-1] == 50
625

626

627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
@pytest.mark.skipif(not ('fbgemm' in torch.backends.quantized.supported_engines and
                         'qnnpack' in torch.backends.quantized.supported_engines),
                    reason="This Pytorch Build has not been built with fbgemm and qnnpack")
@pytest.mark.parametrize('model_name', get_available_quantizable_models())
def test_quantized_classification_model(model_name):
    defaults = {
        'input_shape': (1, 3, 224, 224),
        'pretrained': False,
        'quantize': True,
    }
    kwargs = {**defaults, **_model_params.get(model_name, {})}
    input_shape = kwargs.pop('input_shape')

    # First check if quantize=True provides models that can run with input data
    model = torchvision.models.quantization.__dict__[model_name](**kwargs)
    x = torch.rand(input_shape)
    model(x)

    kwargs['quantize'] = False
    for eval_mode in [True, False]:
        model = torchvision.models.quantization.__dict__[model_name](**kwargs)
        if eval_mode:
            model.eval()
            model.qconfig = torch.quantization.default_qconfig
        else:
            model.train()
            model.qconfig = torch.quantization.default_qat_qconfig

        model.fuse_model()
        if eval_mode:
            torch.quantization.prepare(model, inplace=True)
        else:
            torch.quantization.prepare_qat(model, inplace=True)
            model.eval()

        torch.quantization.convert(model, inplace=True)

    try:
        torch.jit.script(model)
    except Exception as e:
        tb = traceback.format_exc()
        raise AssertionError(f"model cannot be scripted. Traceback = {str(tb)}") from e


671
if __name__ == '__main__':
672
    pytest.main([__file__])