_register_onnx_ops.py 4.23 KB
Newer Older
1
import sys
2
import warnings
3

4
5
import torch

6
7
8
_onnx_opset_version_11 = 11
_onnx_opset_version_16 = 16
base_onnx_opset_version = _onnx_opset_version_11
9

10

11
def _register_custom_op():
12
    from torch.onnx.symbolic_helper import parse_args
13
    from torch.onnx.symbolic_opset11 import select, squeeze, unsqueeze
14

15
    @parse_args("v", "v", "f")
16
17
18
    def symbolic_multi_label_nms(g, boxes, scores, iou_threshold):
        boxes = unsqueeze(g, boxes, 0)
        scores = unsqueeze(g, unsqueeze(g, scores, 0), 0)
19
20
        max_output_per_class = g.op("Constant", value_t=torch.tensor([sys.maxsize], dtype=torch.long))
        iou_threshold = g.op("Constant", value_t=torch.tensor([iou_threshold], dtype=torch.float))
21
22
23
24
25
26
27
        nms_out = g.op(
            "NonMaxSuppression",
            g.op("Cast", boxes, to_i=torch.onnx.TensorProtoDataType.FLOAT),
            g.op("Cast", scores, to_i=torch.onnx.TensorProtoDataType.FLOAT),
            max_output_per_class,
            iou_threshold,
        )
28
        return squeeze(g, select(g, nms_out, 1, g.op("Constant", value_t=torch.tensor([2], dtype=torch.long))), 1)
29

30
    def _process_batch_indices_for_roi_align(g, rois):
31
32
        indices = squeeze(g, select(g, rois, 1, g.op("Constant", value_t=torch.tensor([0], dtype=torch.long))), 1)
        return g.op("Cast", indices, to_i=torch.onnx.TensorProtoDataType.INT64)
33

34
35
36
37
    def _process_rois_for_roi_align(g, rois):
        return select(g, rois, 1, g.op("Constant", value_t=torch.tensor([1, 2, 3, 4], dtype=torch.long)))

    def _process_sampling_ratio_for_roi_align(g, sampling_ratio: int):
38
        if sampling_ratio < 0:
39
            warnings.warn(
40
41
                "ONNX export for RoIAlign with a non-zero sampling_ratio is not supported. "
                "The model will be exported with a sampling_ratio of 0."
42
            )
43
            sampling_ratio = 0
44
45
46
47
48
49
50
51
        return sampling_ratio

    @parse_args("v", "v", "f", "i", "i", "i", "i")
    def roi_align_opset11(g, input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio, aligned):
        batch_indices = _process_batch_indices_for_roi_align(g, rois)
        rois = _process_rois_for_roi_align(g, rois)
        if aligned:
            warnings.warn(
52
53
                "ROIAlign with aligned=True is only supported in opset >= 16. "
                "Please export with opset 16 or higher, or use aligned=False."
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
            )
        sampling_ratio = _process_sampling_ratio_for_roi_align(g, sampling_ratio)
        return g.op(
            "RoiAlign",
            input,
            rois,
            batch_indices,
            spatial_scale_f=spatial_scale,
            output_height_i=pooled_height,
            output_width_i=pooled_width,
            sampling_ratio_i=sampling_ratio,
        )

    @parse_args("v", "v", "f", "i", "i", "i", "i")
    def roi_align_opset16(g, input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio, aligned):
        batch_indices = _process_batch_indices_for_roi_align(g, rois)
        rois = _process_rois_for_roi_align(g, rois)
        coordinate_transformation_mode = "half_pixel" if aligned else "output_half_pixel"
        sampling_ratio = _process_sampling_ratio_for_roi_align(g, sampling_ratio)
73
74
75
76
77
        return g.op(
            "RoiAlign",
            input,
            rois,
            batch_indices,
78
            coordinate_transformation_mode_s=coordinate_transformation_mode,
79
80
81
82
83
            spatial_scale_f=spatial_scale,
            output_height_i=pooled_height,
            output_width_i=pooled_width,
            sampling_ratio_i=sampling_ratio,
        )
84

85
    @parse_args("v", "v", "f", "i", "i")
86
    def roi_pool(g, input, rois, spatial_scale, pooled_height, pooled_width):
87
88
89
        roi_pool = g.op(
            "MaxRoiPool", input, rois, pooled_shape_i=(pooled_height, pooled_width), spatial_scale_f=spatial_scale
        )
90
91
92
        return roi_pool, None

    from torch.onnx import register_custom_op_symbolic
93

94
95
96
97
    register_custom_op_symbolic("torchvision::nms", symbolic_multi_label_nms, _onnx_opset_version_11)
    register_custom_op_symbolic("torchvision::roi_align", roi_align_opset11, _onnx_opset_version_11)
    register_custom_op_symbolic("torchvision::roi_align", roi_align_opset16, _onnx_opset_version_16)
    register_custom_op_symbolic("torchvision::roi_pool", roi_pool, _onnx_opset_version_11)