rpn.py 16.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
from torch.nn import functional as F
from torch import nn

from torchvision.ops import boxes as box_ops

from . import _utils as det_utils


class AnchorGenerator(nn.Module):
    """
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
    Module that generates anchors for a set of feature maps and
    image sizes.

    The module support computing anchors at multiple sizes and aspect ratios
    per feature map.

    sizes and aspect_ratios should have the same number of elements, and it should
    correspond to the number of feature maps.

    sizes[i] and aspect_ratios[i] can have an arbitrary number of elements,
    and AnchorGenerator will output a set of sizes[i] * aspect_ratios[i] anchors
    per spatial location for feature map i.

    Arguments:
        sizes (Tuple[Tuple[int]]):
        aspect_ratios (Tuple[Tuple[float]]):
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    """

    def __init__(
        self,
        sizes=(128, 256, 512),
        aspect_ratios=(0.5, 1.0, 2.0),
    ):
        super(AnchorGenerator, self).__init__()

        if not isinstance(sizes[0], (list, tuple)):
            # TODO change this
            sizes = tuple((s,) for s in sizes)
        if not isinstance(aspect_ratios[0], (list, tuple)):
            aspect_ratios = (aspect_ratios,) * len(sizes)

        assert len(sizes) == len(aspect_ratios)

        self.sizes = sizes
        self.aspect_ratios = aspect_ratios
        self.cell_anchors = None
        self._cache = {}

    @staticmethod
    def generate_anchors(scales, aspect_ratios, device="cpu"):
        scales = torch.as_tensor(scales, dtype=torch.float32, device=device)
        aspect_ratios = torch.as_tensor(aspect_ratios, dtype=torch.float32, device=device)
        h_ratios = torch.sqrt(aspect_ratios)
        w_ratios = 1 / h_ratios

        ws = (w_ratios[:, None] * scales[None, :]).view(-1)
        hs = (h_ratios[:, None] * scales[None, :]).view(-1)

        base_anchors = torch.stack([-ws, -hs, ws, hs], dim=1) / 2
        return base_anchors.round()

    def set_cell_anchors(self, device):
        if self.cell_anchors is not None:
            return self.cell_anchors
        cell_anchors = [
            self.generate_anchors(
                sizes,
                aspect_ratios,
                device
            )
            for sizes, aspect_ratios in zip(self.sizes, self.aspect_ratios)
        ]
        self.cell_anchors = cell_anchors

    def num_anchors_per_location(self):
        return [len(s) * len(a) for s, a in zip(self.sizes, self.aspect_ratios)]

    def grid_anchors(self, grid_sizes, strides):
        anchors = []
        for size, stride, base_anchors in zip(
            grid_sizes, strides, self.cell_anchors
        ):
            grid_height, grid_width = size
            stride_height, stride_width = stride
            device = base_anchors.device
            shifts_x = torch.arange(
                0, grid_width, dtype=torch.float32, device=device
            ) * stride_width
            shifts_y = torch.arange(
                0, grid_height, dtype=torch.float32, device=device
            ) * stride_height
            shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)
            shift_x = shift_x.reshape(-1)
            shift_y = shift_y.reshape(-1)
            shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1)

            anchors.append(
                (shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)
            )

        return anchors

    def cached_grid_anchors(self, grid_sizes, strides):
        key = tuple(grid_sizes) + tuple(strides)
        if key in self._cache:
            return self._cache[key]
        anchors = self.grid_anchors(grid_sizes, strides)
        self._cache[key] = anchors
        return anchors

    def forward(self, image_list, feature_maps):
        grid_sizes = tuple([feature_map.shape[-2:] for feature_map in feature_maps])
        image_size = image_list.tensors.shape[-2:]
        strides = tuple((image_size[0] / g[0], image_size[1] / g[1]) for g in grid_sizes)
        self.set_cell_anchors(feature_maps[0].device)
        anchors_over_all_feature_maps = self.cached_grid_anchors(grid_sizes, strides)
        anchors = []
        for i, (image_height, image_width) in enumerate(image_list.image_sizes):
            anchors_in_image = []
            for anchors_per_feature_map in anchors_over_all_feature_maps:
                anchors_in_image.append(anchors_per_feature_map)
            anchors.append(anchors_in_image)
        anchors = [torch.cat(anchors_per_image) for anchors_per_image in anchors]
        return anchors


class RPNHead(nn.Module):
    """
    Adds a simple RPN Head with classification and regression heads
132
133
134
135

    Arguments:
        in_channels (int): number of channels of the input feature
        num_anchors (int): number of anchors to be predicted
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    """

    def __init__(self, in_channels, num_anchors):
        super(RPNHead, self).__init__()
        self.conv = nn.Conv2d(
            in_channels, in_channels, kernel_size=3, stride=1, padding=1
        )
        self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1)
        self.bbox_pred = nn.Conv2d(
            in_channels, num_anchors * 4, kernel_size=1, stride=1
        )

        for l in self.children():
            torch.nn.init.normal_(l.weight, std=0.01)
            torch.nn.init.constant_(l.bias, 0)

    def forward(self, x):
        logits = []
        bbox_reg = []
        for feature in x:
            t = F.relu(self.conv(feature))
            logits.append(self.cls_logits(t))
            bbox_reg.append(self.bbox_pred(t))
        return logits, bbox_reg


def permute_and_flatten(layer, N, A, C, H, W):
    layer = layer.view(N, -1, C, H, W)
    layer = layer.permute(0, 3, 4, 1, 2)
    layer = layer.reshape(N, -1, C)
    return layer


def concat_box_prediction_layers(box_cls, box_regression):
    box_cls_flattened = []
    box_regression_flattened = []
    # for each feature level, permute the outputs to make them be in the
    # same format as the labels. Note that the labels are computed for
    # all feature levels concatenated, so we keep the same representation
    # for the objectness and the box_regression
    for box_cls_per_level, box_regression_per_level in zip(
        box_cls, box_regression
    ):
        N, AxC, H, W = box_cls_per_level.shape
        Ax4 = box_regression_per_level.shape[1]
        A = Ax4 // 4
        C = AxC // A
        box_cls_per_level = permute_and_flatten(
            box_cls_per_level, N, A, C, H, W
        )
        box_cls_flattened.append(box_cls_per_level)

        box_regression_per_level = permute_and_flatten(
            box_regression_per_level, N, A, 4, H, W
        )
        box_regression_flattened.append(box_regression_per_level)
    # concatenate on the first dimension (representing the feature levels), to
    # take into account the way the labels were generated (with all feature maps
    # being concatenated as well)
    box_cls = torch.cat(box_cls_flattened, dim=1).reshape(-1, C)
    box_regression = torch.cat(box_regression_flattened, dim=1).reshape(-1, 4)
    return box_cls, box_regression


class RegionProposalNetwork(torch.nn.Module):
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    """
    Implements Region Proposal Network (RPN).

    Arguments:
        anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        head (nn.Module): module that computes the objectness and regression deltas
        fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training of the RPN.
        bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training of the RPN.
        batch_size_per_image (int): number of anchors that are sampled during training of the RPN
            for computing the loss
        positive_fraction (float): proportion of positive anchors in a mini-batch during training
            of the RPN
        pre_nms_top_n (Dict[int]): number of proposals to keep before applying NMS. It should
            contain two fields: training and testing, to allow for different values depending
            on training or evaluation
        post_nms_top_n (Dict[int]): number of proposals to keep after applying NMS. It should
            contain two fields: training and testing, to allow for different values depending
            on training or evaluation
        nms_thresh (float): NMS threshold used for postprocessing the RPN proposals

    """
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

    def __init__(self,
                 anchor_generator,
                 head,
                 #
                 fg_iou_thresh, bg_iou_thresh,
                 batch_size_per_image, positive_fraction,
                 #
                 pre_nms_top_n, post_nms_top_n, nms_thresh):
        super(RegionProposalNetwork, self).__init__()
        self.anchor_generator = anchor_generator
        self.head = head
        self.box_coder = det_utils.BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))

        # used during training
        self.box_similarity = box_ops.box_iou

        self.proposal_matcher = det_utils.Matcher(
            fg_iou_thresh,
            bg_iou_thresh,
            allow_low_quality_matches=True,
        )

        self.fg_bg_sampler = det_utils.BalancedPositiveNegativeSampler(
            batch_size_per_image, positive_fraction
        )
        # used during testing
        self._pre_nms_top_n = pre_nms_top_n
        self._post_nms_top_n = post_nms_top_n
        self.nms_thresh = nms_thresh
255
        self.min_size = 1e-3
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

    @property
    def pre_nms_top_n(self):
        if self.training:
            return self._pre_nms_top_n['training']
        return self._pre_nms_top_n['testing']

    @property
    def post_nms_top_n(self):
        if self.training:
            return self._post_nms_top_n['training']
        return self._post_nms_top_n['testing']

    def assign_targets_to_anchors(self, anchors, targets):
        labels = []
        matched_gt_boxes = []
        for anchors_per_image, targets_per_image in zip(anchors, targets):
            gt_boxes = targets_per_image["boxes"]
            match_quality_matrix = self.box_similarity(gt_boxes, anchors_per_image)
            matched_idxs = self.proposal_matcher(match_quality_matrix)
            # get the targets corresponding GT for each proposal
            # NB: need to clamp the indices because we can have a single
            # GT in the image, and matched_idxs can be -2, which goes
            # out of bounds
            matched_gt_boxes_per_image = gt_boxes[matched_idxs.clamp(min=0)]

            labels_per_image = matched_idxs >= 0
            labels_per_image = labels_per_image.to(dtype=torch.float32)

            # Background (negative examples)
            bg_indices = matched_idxs == self.proposal_matcher.BELOW_LOW_THRESHOLD
            labels_per_image[bg_indices] = 0

            # discard indices that are between thresholds
            inds_to_discard = matched_idxs == self.proposal_matcher.BETWEEN_THRESHOLDS
            labels_per_image[inds_to_discard] = -1

            labels.append(labels_per_image)
            matched_gt_boxes.append(matched_gt_boxes_per_image)
        return labels, matched_gt_boxes

    def _get_top_n_idx(self, objectness, num_anchors_per_level):
        r = []
        offset = 0
        for ob in objectness.split(num_anchors_per_level, 1):
            num_anchors = ob.shape[1]
            pre_nms_top_n = min(self.pre_nms_top_n, num_anchors)
            _, top_n_idx = ob.topk(pre_nms_top_n, dim=1)
            r.append(top_n_idx + offset)
            offset += num_anchors
        return torch.cat(r, dim=1)

    def filter_proposals(self, proposals, objectness, image_shapes, num_anchors_per_level):
        num_images = proposals.shape[0]
        device = proposals.device
        # do not backprop throught objectness
        objectness = objectness.detach()
        objectness = objectness.reshape(num_images, -1)

        levels = [
            torch.full((n,), idx, dtype=torch.int64, device=device)
            for idx, n in enumerate(num_anchors_per_level)
        ]
        levels = torch.cat(levels, 0)
        levels = levels.reshape(1, -1).expand_as(objectness)

        # select top_n boxes independently per level before applying nms
        top_n_idx = self._get_top_n_idx(objectness, num_anchors_per_level)
        batch_idx = torch.arange(num_images, device=device)[:, None]
        objectness = objectness[batch_idx, top_n_idx]
        levels = levels[batch_idx, top_n_idx]
        proposals = proposals[batch_idx, top_n_idx]

        final_boxes = []
        final_scores = []
        for boxes, scores, lvl, img_shape in zip(proposals, objectness, levels, image_shapes):
            boxes = box_ops.clip_boxes_to_image(boxes, img_shape)
            keep = box_ops.remove_small_boxes(boxes, self.min_size)
            boxes, scores, lvl = boxes[keep], scores[keep], lvl[keep]
            # non-maximum suppression, independently done per level
            keep = box_ops.batched_nms(boxes, scores, lvl, self.nms_thresh)
            # keep only topk scoring predictions
            keep = keep[:self.post_nms_top_n]
            boxes, scores = boxes[keep], scores[keep]
            final_boxes.append(boxes)
            final_scores.append(scores)
        return final_boxes, final_scores

    def compute_loss(self, objectness, pred_bbox_deltas, labels, regression_targets):
        """
        Arguments:
347
348
349
350
            objectness (Tensor)
            pred_bbox_deltas (Tensor)
            labels (List[Tensor])
            regression_targets (List[Tensor])
351
352
353

        Returns:
            objectness_loss (Tensor)
lambdaflow's avatar
lambdaflow committed
354
            box_loss (Tensor)
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
        """

        sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
        sampled_pos_inds = torch.nonzero(torch.cat(sampled_pos_inds, dim=0)).squeeze(1)
        sampled_neg_inds = torch.nonzero(torch.cat(sampled_neg_inds, dim=0)).squeeze(1)

        sampled_inds = torch.cat([sampled_pos_inds, sampled_neg_inds], dim=0)

        objectness = objectness.flatten()

        labels = torch.cat(labels, dim=0)
        regression_targets = torch.cat(regression_targets, dim=0)

        box_loss = F.l1_loss(
            pred_bbox_deltas[sampled_pos_inds],
            regression_targets[sampled_pos_inds],
            reduction="sum",
        ) / (sampled_inds.numel())

        objectness_loss = F.binary_cross_entropy_with_logits(
            objectness[sampled_inds], labels[sampled_inds]
        )

        return objectness_loss, box_loss

    def forward(self, images, features, targets=None):
        """
        Arguments:
            images (ImageList): images for which we want to compute the predictions
384
            features (List[Tensor]): features computed from the images that are
385
386
                used for computing the predictions. Each tensor in the list
                correspond to different feature levels
lambdaflow's avatar
lambdaflow committed
387
            targets (List[Dict[Tensor]]): ground-truth boxes present in the image (optional).
388
389
                If provided, each element in the dict should contain a field `boxes`,
                with the locations of the ground-truth boxes.
390
391

        Returns:
392
            boxes (List[Tensor]): the predicted boxes from the RPN, one Tensor per
393
                image.
394
            losses (Dict[Tensor]): the losses for the model during training. During
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
                testing, it is an empty dict.
        """
        # RPN uses all feature maps that are available
        features = list(features.values())
        objectness, pred_bbox_deltas = self.head(features)
        anchors = self.anchor_generator(images, features)

        num_images = len(anchors)
        num_anchors_per_level = [o[0].numel() for o in objectness]
        objectness, pred_bbox_deltas = \
            concat_box_prediction_layers(objectness, pred_bbox_deltas)
        # apply pred_bbox_deltas to anchors to obtain the decoded proposals
        # note that we detach the deltas because Faster R-CNN do not backprop through
        # the proposals
        proposals = self.box_coder.decode(pred_bbox_deltas.detach(), anchors)
        proposals = proposals.view(num_images, -1, 4)
        boxes, scores = self.filter_proposals(proposals, objectness, images.image_sizes, num_anchors_per_level)

        losses = {}
        if self.training:
            labels, matched_gt_boxes = self.assign_targets_to_anchors(anchors, targets)
            regression_targets = self.box_coder.encode(matched_gt_boxes, anchors)
            loss_objectness, loss_rpn_box_reg = self.compute_loss(
                objectness, pred_bbox_deltas, labels, regression_targets)
            losses = {
                "loss_objectness": loss_objectness,
                "loss_rpn_box_reg": loss_rpn_box_reg,
            }
        return boxes, losses