test_models_detection_utils.py 2.53 KB
Newer Older
1
import copy
2
3
import torch
from torchvision.models.detection import _utils
4
from torchvision.models.detection.transform import GeneralizedRCNNTransform
5
import unittest
6
from torchvision.models.detection import fasterrcnn_resnet50_fpn
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22


class Tester(unittest.TestCase):
    def test_balanced_positive_negative_sampler(self):
        sampler = _utils.BalancedPositiveNegativeSampler(4, 0.25)
        # keep all 6 negatives first, then add 3 positives, last two are ignore
        matched_idxs = [torch.tensor([0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1])]
        pos, neg = sampler(matched_idxs)
        # we know the number of elements that should be sampled for the positive (1)
        # and the negative (3), and their location. Let's make sure that they are
        # there
        self.assertEqual(pos[0].sum(), 1)
        self.assertEqual(pos[0][6:9].sum(), 1)
        self.assertEqual(neg[0].sum(), 3)
        self.assertEqual(neg[0][0:6].sum(), 3)

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
    def test_fasterrcnn_resnet50_fpn_frozen_layers(self):
        # we know how many initial layers and parameters of the network should
        # be frozen for each trainable_backbone_layers paramter value
        # i.e all 53 params are frozen if trainable_backbone_layers=0
        # ad first 24 params are frozen if trainable_backbone_layers=2
        expected_frozen_params = {0: 53, 1: 43, 2: 24, 3: 11, 4: 1, 5: 0}
        for train_layers, exp_froz_params in expected_frozen_params.items():
            model = fasterrcnn_resnet50_fpn(pretrained=True, progress=False,
                                            num_classes=91, pretrained_backbone=False,
                                            trainable_backbone_layers=train_layers)
            # boolean list that is true if the param at that index is frozen
            is_frozen = [not parameter.requires_grad for _, parameter in model.named_parameters()]
            # check that expected initial number of layers are frozen
            self.assertTrue(all(is_frozen[:exp_froz_params]))

38
39
40
41
42
43
44
45
46
    def test_transform_copy_targets(self):
        transform = GeneralizedRCNNTransform(300, 500, torch.zeros(3), torch.ones(3))
        image = [torch.rand(3, 200, 300), torch.rand(3, 200, 200)]
        targets = [{'boxes': torch.rand(3, 4)}, {'boxes': torch.rand(2, 4)}]
        targets_copy = copy.deepcopy(targets)
        out = transform(image, targets)  # noqa: F841
        self.assertTrue(torch.equal(targets[0]['boxes'], targets_copy[0]['boxes']))
        self.assertTrue(torch.equal(targets[1]['boxes'], targets_copy[1]['boxes']))

47
48
49

if __name__ == '__main__':
    unittest.main()