video.py 15.5 KB
Newer Older
1
import gc
2
import math
3
import os
4
import re
5
import warnings
6
from fractions import Fraction
7
from typing import Any, Dict, List, Optional, Tuple, Union
8

9
10
import numpy as np
import torch
Francisco Massa's avatar
Francisco Massa committed
11

Bruno Korbar's avatar
Bruno Korbar committed
12
13
from ..extension import _load_library

Kai Zhang's avatar
Kai Zhang committed
14
from ..utils import _log_api_usage_once
15
from . import _video_opt
Francisco Massa's avatar
Francisco Massa committed
16

Bruno Korbar's avatar
Bruno Korbar committed
17
18
19
20
21
try:
    _load_library("Decoder")
    _HAS_GPU_VIDEO_DECODER = True
except (ImportError, OSError, ModuleNotFoundError):
    _HAS_GPU_VIDEO_DECODER = False
Francisco Massa's avatar
Francisco Massa committed
22

23
24
try:
    import av
25

26
    av.logging.set_level(av.logging.ERROR)
27
28
29
    if not hasattr(av.video.frame.VideoFrame, "pict_type"):
        av = ImportError(
            """\
30
31
32
33
34
Your version of PyAV is too old for the necessary video operations in torchvision.
If you are on Python 3.5, you will have to build from source (the conda-forge
packages are not up-to-date).  See
https://github.com/mikeboers/PyAV#installation for instructions on how to
install PyAV on your system.
35
36
"""
        )
37
except ImportError:
38
39
    av = ImportError(
        """\
40
41
42
PyAV is not installed, and is necessary for the video operations in torchvision.
See https://github.com/mikeboers/PyAV#installation for instructions on how to
install PyAV on your system.
43
44
"""
    )
45
46


47
def _check_av_available() -> None:
48
49
50
51
    if isinstance(av, Exception):
        raise av


52
def _av_available() -> bool:
53
54
55
    return not isinstance(av, Exception)


56
57
# PyAV has some reference cycles
_CALLED_TIMES = 0
58
_GC_COLLECTION_INTERVAL = 10
59
60


61
62
63
64
65
66
def write_video(
    filename: str,
    video_array: torch.Tensor,
    fps: float,
    video_codec: str = "libx264",
    options: Optional[Dict[str, Any]] = None,
67
68
69
70
    audio_array: Optional[torch.Tensor] = None,
    audio_fps: Optional[float] = None,
    audio_codec: Optional[str] = None,
    audio_options: Optional[Dict[str, Any]] = None,
71
) -> None:
72
73
74
    """
    Writes a 4d tensor in [T, H, W, C] format in a video file

75
76
77
78
79
80
81
82
83
84
85
86
    Args:
        filename (str): path where the video will be saved
        video_array (Tensor[T, H, W, C]): tensor containing the individual frames,
            as a uint8 tensor in [T, H, W, C] format
        fps (Number): video frames per second
        video_codec (str): the name of the video codec, i.e. "libx264", "h264", etc.
        options (Dict): dictionary containing options to be passed into the PyAV video stream
        audio_array (Tensor[C, N]): tensor containing the audio, where C is the number of channels
            and N is the number of samples
        audio_fps (Number): audio sample rate, typically 44100 or 48000
        audio_codec (str): the name of the audio codec, i.e. "mp3", "aac", etc.
        audio_options (Dict): dictionary containing options to be passed into the PyAV audio stream
87
    """
Kai Zhang's avatar
Kai Zhang committed
88
89
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(write_video)
90
91
92
    _check_av_available()
    video_array = torch.as_tensor(video_array, dtype=torch.uint8).numpy()

93
94
95
96
97
    # PyAV does not support floating point numbers with decimal point
    # and will throw OverflowException in case this is not the case
    if isinstance(fps, float):
        fps = np.round(fps)

98
99
100
101
102
103
104
    with av.open(filename, mode="w") as container:
        stream = container.add_stream(video_codec, rate=fps)
        stream.width = video_array.shape[2]
        stream.height = video_array.shape[1]
        stream.pix_fmt = "yuv420p" if video_codec != "libx264rgb" else "rgb24"
        stream.options = options or {}

105
106
        if audio_array is not None:
            audio_format_dtypes = {
107
108
109
110
111
112
113
114
115
116
                "dbl": "<f8",
                "dblp": "<f8",
                "flt": "<f4",
                "fltp": "<f4",
                "s16": "<i2",
                "s16p": "<i2",
                "s32": "<i4",
                "s32p": "<i4",
                "u8": "u1",
                "u8p": "u1",
117
118
119
120
121
122
123
124
125
126
127
            }
            a_stream = container.add_stream(audio_codec, rate=audio_fps)
            a_stream.options = audio_options or {}

            num_channels = audio_array.shape[0]
            audio_layout = "stereo" if num_channels > 1 else "mono"
            audio_sample_fmt = container.streams.audio[0].format.name

            format_dtype = np.dtype(audio_format_dtypes[audio_sample_fmt])
            audio_array = torch.as_tensor(audio_array).numpy().astype(format_dtype)

128
            frame = av.AudioFrame.from_ndarray(audio_array, format=audio_sample_fmt, layout=audio_layout)
129
130
131
132
133
134
135
136
137

            frame.sample_rate = audio_fps

            for packet in a_stream.encode(frame):
                container.mux(packet)

            for packet in a_stream.encode():
                container.mux(packet)

138
139
140
141
142
143
144
145
        for img in video_array:
            frame = av.VideoFrame.from_ndarray(img, format="rgb24")
            frame.pict_type = "NONE"
            for packet in stream.encode(frame):
                container.mux(packet)

        # Flush stream
        for packet in stream.encode():
146
147
148
            container.mux(packet)


149
def _read_from_stream(
150
151
152
153
154
155
156
    container: "av.container.Container",
    start_offset: float,
    end_offset: float,
    pts_unit: str,
    stream: "av.stream.Stream",
    stream_name: Dict[str, Optional[Union[int, Tuple[int, ...], List[int]]]],
) -> List["av.frame.Frame"]:
157
158
159
160
161
    global _CALLED_TIMES, _GC_COLLECTION_INTERVAL
    _CALLED_TIMES += 1
    if _CALLED_TIMES % _GC_COLLECTION_INTERVAL == _GC_COLLECTION_INTERVAL - 1:
        gc.collect()

162
    if pts_unit == "sec":
163
164
        # TODO: we should change all of this from ground up to simply take
        # sec and convert to MS in C++
165
166
167
168
        start_offset = int(math.floor(start_offset * (1 / stream.time_base)))
        if end_offset != float("inf"):
            end_offset = int(math.ceil(end_offset * (1 / stream.time_base)))
    else:
169
        warnings.warn("The pts_unit 'pts' gives wrong results. Please use pts_unit 'sec'.")
170

171
    frames = {}
172
    should_buffer = True
173
174
    max_buffer_size = 5
    if stream.type == "video":
175
        # DivX-style packed B-frames can have out-of-order pts (2 frames in a single pkt)
176
177
        # so need to buffer some extra frames to sort everything
        # properly
178
179
180
181
182
183
184
        extradata = stream.codec_context.extradata
        # overly complicated way of finding if `divx_packed` is set, following
        # https://github.com/FFmpeg/FFmpeg/commit/d5a21172283572af587b3d939eba0091484d3263
        if extradata and b"DivX" in extradata:
            # can't use regex directly because of some weird characters sometimes...
            pos = extradata.find(b"DivX")
            d = extradata[pos:]
185
            o = re.search(rb"DivX(\d+)Build(\d+)(\w)", d)
186
            if o is None:
187
                o = re.search(rb"DivX(\d+)b(\d+)(\w)", d)
188
189
            if o is not None:
                should_buffer = o.group(3) == b"p"
190
    seek_offset = start_offset
191
192
    # some files don't seek to the right location, so better be safe here
    seek_offset = max(seek_offset - 1, 0)
193
194
195
196
    if should_buffer:
        # FIXME this is kind of a hack, but we will jump to the previous keyframe
        # so this will be safe
        seek_offset = max(seek_offset - max_buffer_size, 0)
197
198
199
200
    try:
        # TODO check if stream needs to always be the video stream here or not
        container.seek(seek_offset, any_frame=False, backward=True, stream=stream)
    except av.AVError:
201
202
        # TODO add some warnings in this case
        # print("Corrupted file?", container.name)
203
        return []
204
    buffer_count = 0
205
    try:
206
        for _idx, frame in enumerate(container.decode(**stream_name)):
207
208
209
210
211
212
213
214
215
            frames[frame.pts] = frame
            if frame.pts >= end_offset:
                if should_buffer and buffer_count < max_buffer_size:
                    buffer_count += 1
                    continue
                break
    except av.AVError:
        # TODO add a warning
        pass
216
    # ensure that the results are sorted wrt the pts
217
    result = [frames[i] for i in sorted(frames) if start_offset <= frames[i].pts <= end_offset]
218
    if len(frames) > 0 and start_offset > 0 and start_offset not in frames:
219
220
221
        # if there is no frame that exactly matches the pts of start_offset
        # add the last frame smaller than start_offset, to guarantee that
        # we will have all the necessary data. This is most useful for audio
222
223
224
225
        preceding_frames = [i for i in frames if i < start_offset]
        if len(preceding_frames) > 0:
            first_frame_pts = max(preceding_frames)
            result.insert(0, frames[first_frame_pts])
226
    return result
227
228


229
230
231
def _align_audio_frames(
    aframes: torch.Tensor, audio_frames: List["av.frame.Frame"], ref_start: int, ref_end: float
) -> torch.Tensor:
232
233
234
235
236
237
238
239
240
241
242
243
    start, end = audio_frames[0].pts, audio_frames[-1].pts
    total_aframes = aframes.shape[1]
    step_per_aframe = (end - start + 1) / total_aframes
    s_idx = 0
    e_idx = total_aframes
    if start < ref_start:
        s_idx = int((ref_start - start) / step_per_aframe)
    if end > ref_end:
        e_idx = int((ref_end - end) / step_per_aframe)
    return aframes[:, s_idx:e_idx]


244
def read_video(
245
246
247
248
    filename: str,
    start_pts: Union[float, Fraction] = 0,
    end_pts: Optional[Union[float, Fraction]] = None,
    pts_unit: str = "pts",
249
    output_format: str = "THWC",
250
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]:
251
252
253
254
    """
    Reads a video from a file, returning both the video frames as well as
    the audio frames

255
256
257
258
259
260
261
262
    Args:
        filename (str): path to the video file
        start_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
            The start presentation time of the video
        end_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
            The end presentation time
        pts_unit (str, optional): unit in which start_pts and end_pts values will be interpreted,
            either 'pts' or 'sec'. Defaults to 'pts'.
263
        output_format (str, optional): The format of the output video tensors. Can be either "THWC" (default) or "TCHW".
264
265

    Returns:
266
        vframes (Tensor[T, H, W, C] or Tensor[T, C, H, W]): the `T` video frames
267
268
        aframes (Tensor[K, L]): the audio frames, where `K` is the number of channels and `L` is the number of points
        info (Dict): metadata for the video and audio. Can contain the fields video_fps (float) and audio_fps (int)
269
    """
Kai Zhang's avatar
Kai Zhang committed
270
271
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(read_video)
Francisco Massa's avatar
Francisco Massa committed
272

273
274
275
276
    output_format = output_format.upper()
    if output_format not in ("THWC", "TCHW"):
        raise ValueError(f"output_format should be either 'THWC' or 'TCHW', got {output_format}.")

Francisco Massa's avatar
Francisco Massa committed
277
    from torchvision import get_video_backend
278

279
    if not os.path.exists(filename):
280
        raise RuntimeError(f"File not found: {filename}")
281

Francisco Massa's avatar
Francisco Massa committed
282
    if get_video_backend() != "pyav":
283
        vframes, aframes, info = _video_opt._read_video(filename, start_pts, end_pts, pts_unit)
284
    else:
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        _check_av_available()

        if end_pts is None:
            end_pts = float("inf")

        if end_pts < start_pts:
            raise ValueError(
                f"end_pts should be larger than start_pts, got start_pts={start_pts} and end_pts={end_pts}"
            )

        info = {}
        video_frames = []
        audio_frames = []
        audio_timebase = _video_opt.default_timebase

        try:
            with av.open(filename, metadata_errors="ignore") as container:
                if container.streams.audio:
                    audio_timebase = container.streams.audio[0].time_base
                if container.streams.video:
                    video_frames = _read_from_stream(
                        container,
                        start_pts,
                        end_pts,
                        pts_unit,
                        container.streams.video[0],
                        {"video": 0},
                    )
                    video_fps = container.streams.video[0].average_rate
                    # guard against potentially corrupted files
                    if video_fps is not None:
                        info["video_fps"] = float(video_fps)

                if container.streams.audio:
                    audio_frames = _read_from_stream(
                        container,
                        start_pts,
                        end_pts,
                        pts_unit,
                        container.streams.audio[0],
                        {"audio": 0},
                    )
                    info["audio_fps"] = container.streams.audio[0].rate

        except av.AVError:
            # TODO raise a warning?
            pass

        vframes_list = [frame.to_rgb().to_ndarray() for frame in video_frames]
        aframes_list = [frame.to_ndarray() for frame in audio_frames]

        if vframes_list:
            vframes = torch.as_tensor(np.stack(vframes_list))
        else:
            vframes = torch.empty((0, 1, 1, 3), dtype=torch.uint8)

        if aframes_list:
            aframes = np.concatenate(aframes_list, 1)
            aframes = torch.as_tensor(aframes)
            if pts_unit == "sec":
                start_pts = int(math.floor(start_pts * (1 / audio_timebase)))
                if end_pts != float("inf"):
                    end_pts = int(math.ceil(end_pts * (1 / audio_timebase)))
            aframes = _align_audio_frames(aframes, audio_frames, start_pts, end_pts)
        else:
            aframes = torch.empty((1, 0), dtype=torch.float32)
351

352
353
354
355
    if output_format == "TCHW":
        # [T,H,W,C] --> [T,C,H,W]
        vframes = vframes.permute(0, 3, 1, 2)

356
357
358
    return vframes, aframes, info


359
def _can_read_timestamps_from_packets(container: "av.container.Container") -> bool:
360
361
362
363
364
365
366
367
    extradata = container.streams[0].codec_context.extradata
    if extradata is None:
        return False
    if b"Lavc" in extradata:
        return True
    return False


368
def _decode_video_timestamps(container: "av.container.Container") -> List[int]:
369
370
371
372
373
374
375
    if _can_read_timestamps_from_packets(container):
        # fast path
        return [x.pts for x in container.demux(video=0) if x.pts is not None]
    else:
        return [x.pts for x in container.decode(video=0) if x.pts is not None]


376
def read_video_timestamps(filename: str, pts_unit: str = "pts") -> Tuple[List[int], Optional[float]]:
377
378
379
380
381
    """
    List the video frames timestamps.

    Note that the function decodes the whole video frame-by-frame.

382
383
384
385
386
387
388
389
390
    Args:
        filename (str): path to the video file
        pts_unit (str, optional): unit in which timestamp values will be returned
            either 'pts' or 'sec'. Defaults to 'pts'.

    Returns:
        pts (List[int] if pts_unit = 'pts', List[Fraction] if pts_unit = 'sec'):
            presentation timestamps for each one of the frames in the video.
        video_fps (float, optional): the frame rate for the video
391
392

    """
Kai Zhang's avatar
Kai Zhang committed
393
394
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(read_video_timestamps)
Francisco Massa's avatar
Francisco Massa committed
395
    from torchvision import get_video_backend
396

Francisco Massa's avatar
Francisco Massa committed
397
398
399
    if get_video_backend() != "pyav":
        return _video_opt._read_video_timestamps(filename, pts_unit)

400
    _check_av_available()
401

402
    video_fps = None
403
    pts = []
404
405

    try:
406
407
408
409
410
411
412
413
414
        with av.open(filename, metadata_errors="ignore") as container:
            if container.streams.video:
                video_stream = container.streams.video[0]
                video_time_base = video_stream.time_base
                try:
                    pts = _decode_video_timestamps(container)
                except av.AVError:
                    warnings.warn(f"Failed decoding frames for file {filename}")
                video_fps = float(video_stream.average_rate)
415
416
417
    except av.AVError as e:
        msg = f"Failed to open container for {filename}; Caught error: {e}"
        warnings.warn(msg, RuntimeWarning)
418

419
    pts.sort()
420

421
    if pts_unit == "sec":
422
423
424
        pts = [x * video_time_base for x in pts]

    return pts, video_fps