ROIPool_cuda.cu 7.85 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>

#include "cuda_helpers.h"

template <typename T>
__global__ void RoIPoolForward(
    const int nthreads,
    const T* input,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const T* rois,
    T* output,
    int* argmax_data) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];
    int roi_start_w = round(offset_rois[1] * spatial_scale);
    int roi_start_h = round(offset_rois[2] * spatial_scale);
    int roi_end_w = round(offset_rois[3] * spatial_scale);
    int roi_end_h = round(offset_rois[4] * spatial_scale);

    // Force malformed ROIs to be 1x1
    int roi_width = max(roi_end_w - roi_start_w + 1, 1);
    int roi_height = max(roi_end_h - roi_start_h + 1, 1);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
    int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
    int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
    int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));

    // Add roi offsets and clip to input boundaries
    hstart = min(max(hstart + roi_start_h, 0), height);
    hend = min(max(hend + roi_start_h, 0), height);
    wstart = min(max(wstart + roi_start_w, 0), width);
    wend = min(max(wend + roi_start_w, 0), width);
    bool is_empty = (hend <= hstart) || (wend <= wstart);

    // Define an empty pooling region to be zero
    T maxval = is_empty ? 0 : -FLT_MAX;
    // If nothing is pooled, argmax = -1 causes nothing to be backprop'd
    int maxidx = -1;
    const T* offset_input =
        input + (roi_batch_ind * channels + c) * height * width;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        int input_index = h * width + w;
        if (offset_input[input_index] > maxval) {
          maxval = offset_input[input_index];
          maxidx = input_index;
        }
      }
    }
    output[index] = maxval;
    argmax_data[index] = maxidx;
  }
}

template <typename T>
__global__ void RoIPoolBackward(
    const int nthreads,
    const T* grad_output,
    const int* argmax_data,
    const int num_rois,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    T* grad_input,
    const T* rois,
    const int n_stride,
    const int c_stride,
    const int h_stride,
    const int w_stride) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];
    T* grad_input_offset =
        grad_input + ((roi_batch_ind * channels + c) * height * width);

    int output_offset = n * n_stride + c * c_stride;
    const int* argmax_data_offset =
        argmax_data + (n * channels + c) * pooled_height * pooled_width;
    int argmax = argmax_data_offset[ph * pooled_width + pw];

    if (argmax != -1) {
      atomicAdd(
          grad_input_offset + argmax,
          static_cast<T>(
              grad_output[output_offset + ph * h_stride + pw * w_stride]));
    }
  }
}

std::tuple<at::Tensor, at::Tensor> ROIPool_forward_cuda(
    const at::Tensor& input,
    const at::Tensor& rois,
    const float spatial_scale,
    const int pooled_height,
    const int pooled_width) {
124
125
  AT_ASSERTM(input.is_cuda(), "input must be a CUDA tensor");
  AT_ASSERTM(rois.is_cuda(), "rois must be a CUDA tensor");
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

  at::CheckedFrom c = "ROIPool_forward_cuda";
  at::checkAllSameGPU(c, {input_t, rois_t});
  at::checkAllSameType(c, {input_t, rois_t});

  at::cuda::CUDAGuard device_guard(input.device());

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

  at::Tensor output = at::zeros(
      {num_rois, channels, pooled_height, pooled_width}, input.options());
  at::Tensor argmax = at::zeros(
      {num_rois, channels, pooled_height, pooled_width},
      input.options().dtype(at::kInt));

  auto output_size = num_rois * pooled_height * pooled_width * channels;
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

Francisco Massa's avatar
Francisco Massa committed
149
150
151
152
  dim3 grid(std::min(
      at::cuda::ATenCeilDiv(
          static_cast<int64_t>(output_size), static_cast<int64_t>(512)),
      static_cast<int64_t>(4096)));
153
154
155
156
157
158
159
  dim3 block(512);

  if (output.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return std::make_tuple(output, argmax);
  }

160
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "ROIPool_forward", [&] {
161
162
    RoIPoolForward<scalar_t><<<grid, block, 0, stream>>>(
        output_size,
163
        input.contiguous().data_ptr<scalar_t>(),
164
165
166
167
168
169
        spatial_scale,
        channels,
        height,
        width,
        pooled_height,
        pooled_width,
170
171
172
        rois.contiguous().data_ptr<scalar_t>(),
        output.data_ptr<scalar_t>(),
        argmax.data_ptr<int>());
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
  });
  AT_CUDA_CHECK(cudaGetLastError());
  return std::make_tuple(output, argmax);
}

at::Tensor ROIPool_backward_cuda(
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& argmax,
    const float spatial_scale,
    const int pooled_height,
    const int pooled_width,
    const int batch_size,
    const int channels,
    const int height,
    const int width) {
  // Check if input tensors are CUDA tensors
190
191
192
  AT_ASSERTM(grad.is_cuda(), "grad must be a CUDA tensor");
  AT_ASSERTM(rois.is_cuda(), "rois must be a CUDA tensor");
  AT_ASSERTM(argmax.is_cuda(), "argmax must be a CUDA tensor");
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

  at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2},
      argmax_t{argmax, "argmax", 3};

  at::CheckedFrom c = "ROIPool_backward_cuda";
  at::checkAllSameGPU(c, {grad_t, rois_t, argmax_t});
  at::checkAllSameType(c, {grad_t, rois_t});

  at::cuda::CUDAGuard device_guard(grad.device());

  auto num_rois = rois.size(0);

  at::Tensor grad_input =
      at::zeros({batch_size, channels, height, width}, grad.options());

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

Francisco Massa's avatar
Francisco Massa committed
210
211
212
213
  dim3 grid(std::min(
      at::cuda::ATenCeilDiv(
          static_cast<int64_t>(grad.numel()), static_cast<int64_t>(512)),
      static_cast<int64_t>(4096)));
214
215
216
217
218
219
220
221
222
223
224
225
226
  dim3 block(512);

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return grad_input;
  }

  int n_stride = grad.stride(0);
  int c_stride = grad.stride(1);
  int h_stride = grad.stride(2);
  int w_stride = grad.stride(3);

227
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(grad.scalar_type(), "ROIPool_backward", [&] {
228
229
    RoIPoolBackward<scalar_t><<<grid, block, 0, stream>>>(
        grad.numel(),
230
231
        grad.data_ptr<scalar_t>(),
        argmax.contiguous().data_ptr<int>(),
232
233
234
235
236
237
238
        num_rois,
        spatial_scale,
        channels,
        height,
        width,
        pooled_height,
        pooled_width,
239
240
        grad_input.data_ptr<scalar_t>(),
        rois.contiguous().data_ptr<scalar_t>(),
241
242
243
244
245
246
247
248
        n_stride,
        c_stride,
        h_stride,
        w_stride);
  });
  AT_CUDA_CHECK(cudaGetLastError());
  return grad_input;
}