PSROIPool_cpu.cpp 8.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#include <ATen/ATen.h>
#include <ATen/TensorUtils.h>
#include <TH/TH.h>
#include <algorithm>

template <class T>
inline void add(T* address, const T& val) {
  *address += val;
}

template <typename T>
void PSROIPoolForward(
    const T* input,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const T* rois,
    const int channels_out,
    const int num_rois,
    T* output,
    int* channel_mapping) {
  for (int n = 0; n < num_rois; ++n) {
    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];
    int roi_start_w = round(offset_rois[1] * spatial_scale);
    int roi_start_h = round(offset_rois[2] * spatial_scale);
    int roi_end_w = round(offset_rois[3] * spatial_scale);
    int roi_end_h = round(offset_rois[4] * spatial_scale);

    // Force too small ROIs to be 1x1
    int roi_width = std::max(roi_end_w - roi_start_w, 1);
    int roi_height = std::max(roi_end_h - roi_start_h, 1);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    int c_in = 0;
    for (int c_out = 0; c_out < channels_out; ++c_out) {
      for (int ph = 0; ph < pooled_height; ++ph) {
        for (int pw = 0; pw < pooled_width; ++pw) {
          int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
          int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
          int hend =
              static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
          int wend =
              static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));

          // Add roi offsets and clip to input boundaries
          hstart = std::min(std::max(hstart + roi_start_h, 0), height - 1);
          hend = std::min(std::max(hend + roi_start_h, 0), height - 1);
          wstart = std::min(std::max(wstart + roi_start_w, 0), width - 1);
          wend = std::min(std::max(wend + roi_start_w, 0), width - 1);
          bool is_empty = (hend <= hstart) || (wend <= wstart);

          const T* offset_input =
              input + (roi_batch_ind * channels + c_in) * height * width;

          T out_sum = 0;
          for (int h = hstart; h < hend; ++h) {
            for (int w = wstart; w < wend; ++w) {
              int input_index = h * width + w;
              out_sum += offset_input[input_index];
            }
          }

          int index =
              ((n * channels_out + c_out) * pooled_height + ph) * pooled_width +
              pw;
          T bin_area = (hend - hstart) * (wend - wstart);
          output[index] = is_empty ? static_cast<T>(0) : out_sum / bin_area;
          channel_mapping[index] = c_in;
          c_in++;
        }
      }
    }
  }
}

template <typename T>
void PSROIPoolBackward(
    const T* grad_output,
    const int* channel_mapping,
    const int num_rois,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int channels_out,
    T* grad_input,
    const T* rois) {
  for (int n = 0; n < num_rois; ++n) {
    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];
    int roi_start_w = roundf(offset_rois[1] * spatial_scale);
    int roi_start_h = roundf(offset_rois[2] * spatial_scale);
    int roi_end_w = roundf(offset_rois[3] * spatial_scale);
    int roi_end_h = roundf(offset_rois[4] * spatial_scale);

    // Force too small ROIs to be 1x1
    int roi_width = std::max(roi_end_w - roi_start_w, 1);
    int roi_height = std::max(roi_end_h - roi_start_h, 1);
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    for (int ph = 0; ph < pooled_height; ++ph) {
      for (int pw = 0; pw < pooled_width; ++pw) {
        int hstart = static_cast<int>(floor(static_cast<T>(ph) * bin_size_h));
        int wstart = static_cast<int>(floor(static_cast<T>(pw) * bin_size_w));
        int hend = static_cast<int>(ceil(static_cast<T>(ph + 1) * bin_size_h));
        int wend = static_cast<int>(ceil(static_cast<T>(pw + 1) * bin_size_w));

        // Add roi offsets and clip to input boundaries
        hstart = std::min(std::max(hstart + roi_start_h, 0), height);
        hend = std::min(std::max(hend + roi_start_h, 0), height);
        wstart = std::min(std::max(wstart + roi_start_w, 0), width);
        wend = std::min(std::max(wend + roi_start_w, 0), width);
        bool is_empty = (hend <= hstart) || (wend <= wstart);

        for (int c_out = 0; c_out < channels_out; ++c_out) {
          int index =
              ((n * channels_out + c_out) * pooled_height + ph) * pooled_width +
              pw;
          int c_in = channel_mapping[index];

          T* grad_input_offset =
              grad_input + (roi_batch_ind * channels + c_in) * height * width;
          T bin_area = (hend - hstart) * (wend - wstart);
          T diff_val =
              is_empty ? static_cast<T>(0) : grad_output[index] / bin_area;
          for (int h = hstart; h < hend; ++h) {
            for (int w = wstart; w < wend; ++w) {
              int grad_input_index = h * width + w;
              add(grad_input_offset + grad_input_index, diff_val);
            }
          }
        }
      }
    }
  }
}

std::tuple<at::Tensor, at::Tensor> PSROIPool_forward_cpu(
    const at::Tensor& input,
    const at::Tensor& rois,
    const float spatial_scale,
    const int pooled_height,
    const int pooled_width) {
  // Check if input tensors are CPU tensors
  AT_ASSERTM(input.device().is_cpu(), "input must be a CPU tensor");
  AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor");

  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

  at::CheckedFrom c = "PSROIPool_forward_cpu";
  at::checkAllSameType(c, {input_t, rois_t});

  int num_rois = rois.size(0);
  int channels = input.size(1);
  int height = input.size(2);
  int width = input.size(3);

  AT_ASSERTM(
      channels % (pooled_height * pooled_width) == 0,
      "input channels must be a multiple of pooling height * pooling width");
  int channels_out = channels / (pooled_height * pooled_width);

  auto output = at::zeros(
      {num_rois, channels_out, pooled_height, pooled_width}, input.options());
  auto channel_mapping =
      at::zeros(output.sizes(), input.options().dtype(at::kInt));

  auto output_size = output.numel();
  if (output_size == 0) {
    return std::make_tuple(output, channel_mapping);
  }

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      input.scalar_type(), "PSROIPool_forward", [&] {
        PSROIPoolForward<scalar_t>(
184
            input.contiguous().data_ptr<scalar_t>(),
185
186
187
188
189
190
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
191
            rois.contiguous().data_ptr<scalar_t>(),
192
193
            channels_out,
            num_rois,
194
195
            output.data_ptr<scalar_t>(),
            channel_mapping.data_ptr<int>());
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
      });
  return std::make_tuple(output, channel_mapping);
}

at::Tensor PSROIPool_backward_cpu(
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& channel_mapping,
    const float spatial_scale,
    const int pooled_height,
    const int pooled_width,
    const int batch_size,
    const int channels,
    const int height,
    const int width) {
  // Check if input tensors are CPU tensors
  AT_ASSERTM(grad.device().is_cpu(), "grad must be a CPU tensor");
  AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor");
  AT_ASSERTM(
      channel_mapping.device().is_cpu(),
      "channel_mapping must be a CPU tensor");

  at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2},
      channel_mapping_t{channel_mapping, "channel_mapping", 3};

  at::CheckedFrom c = "PSROIPool_backward_cpu";
  at::checkAllSameType(c, {grad_t, rois_t});

  auto num_rois = rois.size(0);
  auto grad_input =
      at::zeros({batch_size, channels, height, width}, grad.options());

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    return grad_input;
  }

  int channels_out = channels / (pooled_height * pooled_width);

  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      grad.scalar_type(), "PSROIPool_backward", [&] {
        PSROIPoolBackward<scalar_t>(
238
239
            grad.contiguous().data_ptr<scalar_t>(),
            channel_mapping.data_ptr<int>(),
240
241
242
243
244
245
246
247
            num_rois,
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            channels_out,
248
249
            grad_input.data_ptr<scalar_t>(),
            rois.contiguous().data_ptr<scalar_t>());
250
251
252
      });
  return grad_input;
}