shufflenetv2.py 8.2 KB
Newer Older
Bar's avatar
Bar committed
1
import torch
2
from torch import Tensor
Bar's avatar
Bar committed
3
import torch.nn as nn
ekka's avatar
ekka committed
4
from .utils import load_state_dict_from_url
5
from typing import Callable, Any, List
Bar's avatar
Bar committed
6

7
8
9
10
11

__all__ = [
    'ShuffleNetV2', 'shufflenet_v2_x0_5', 'shufflenet_v2_x1_0',
    'shufflenet_v2_x1_5', 'shufflenet_v2_x2_0'
]
Bar's avatar
Bar committed
12
13

model_urls = {
14
15
    'shufflenetv2_x0.5': 'https://download.pytorch.org/models/shufflenetv2_x0.5-f707e7126e.pth',
    'shufflenetv2_x1.0': 'https://download.pytorch.org/models/shufflenetv2_x1-5666bf0f80.pth',
Bar's avatar
Bar committed
16
17
18
19
20
    'shufflenetv2_x1.5': None,
    'shufflenetv2_x2.0': None,
}


21
def channel_shuffle(x: Tensor, groups: int) -> Tensor:
22
    batchsize, num_channels, height, width = x.size()
Bar's avatar
Bar committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
    channels_per_group = num_channels // groups

    # reshape
    x = x.view(batchsize, groups,
               channels_per_group, height, width)

    x = torch.transpose(x, 1, 2).contiguous()

    # flatten
    x = x.view(batchsize, -1, height, width)

    return x


class InvertedResidual(nn.Module):
38
39
40
41
42
43
    def __init__(
        self,
        inp: int,
        oup: int,
        stride: int
    ) -> None:
Bar's avatar
Bar committed
44
45
46
47
48
49
50
51
52
53
54
        super(InvertedResidual, self).__init__()

        if not (1 <= stride <= 3):
            raise ValueError('illegal stride value')
        self.stride = stride

        branch_features = oup // 2
        assert (self.stride != 1) or (inp == branch_features << 1)

        if self.stride > 1:
            self.branch1 = nn.Sequential(
55
                self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),
Bar's avatar
Bar committed
56
                nn.BatchNorm2d(inp),
57
                nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
Bar's avatar
Bar committed
58
59
60
                nn.BatchNorm2d(branch_features),
                nn.ReLU(inplace=True),
            )
61
62
        else:
            self.branch1 = nn.Sequential()
Bar's avatar
Bar committed
63
64

        self.branch2 = nn.Sequential(
65
66
            nn.Conv2d(inp if (self.stride > 1) else branch_features,
                      branch_features, kernel_size=1, stride=1, padding=0, bias=False),
Bar's avatar
Bar committed
67
68
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
69
            self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),
Bar's avatar
Bar committed
70
            nn.BatchNorm2d(branch_features),
71
            nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
Bar's avatar
Bar committed
72
73
74
75
76
            nn.BatchNorm2d(branch_features),
            nn.ReLU(inplace=True),
        )

    @staticmethod
77
78
79
80
81
82
83
84
    def depthwise_conv(
        i: int,
        o: int,
        kernel_size: int,
        stride: int = 1,
        padding: int = 0,
        bias: bool = False
    ) -> nn.Conv2d:
Bar's avatar
Bar committed
85
86
        return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)

87
    def forward(self, x: Tensor) -> Tensor:
Bar's avatar
Bar committed
88
89
90
91
92
93
94
95
96
97
98
99
        if self.stride == 1:
            x1, x2 = x.chunk(2, dim=1)
            out = torch.cat((x1, self.branch2(x2)), dim=1)
        else:
            out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)

        out = channel_shuffle(out, 2)

        return out


class ShuffleNetV2(nn.Module):
100
101
102
103
104
105
106
    def __init__(
        self,
        stages_repeats: List[int],
        stages_out_channels: List[int],
        num_classes: int = 1000,
        inverted_residual: Callable[..., nn.Module] = InvertedResidual
    ) -> None:
Bar's avatar
Bar committed
107
108
        super(ShuffleNetV2, self).__init__()

Bar's avatar
Bar committed
109
110
111
112
113
        if len(stages_repeats) != 3:
            raise ValueError('expected stages_repeats as list of 3 positive ints')
        if len(stages_out_channels) != 5:
            raise ValueError('expected stages_out_channels as list of 5 positive ints')
        self._stage_out_channels = stages_out_channels
ekka's avatar
ekka committed
114

Bar's avatar
Bar committed
115
116
        input_channels = 3
        output_channels = self._stage_out_channels[0]
Bar's avatar
Bar committed
117
118
119
120
121
122
123
124
125
        self.conv1 = nn.Sequential(
            nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False),
            nn.BatchNorm2d(output_channels),
            nn.ReLU(inplace=True),
        )
        input_channels = output_channels

        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

126
127
128
129
        # Static annotations for mypy
        self.stage2: nn.Sequential
        self.stage3: nn.Sequential
        self.stage4: nn.Sequential
Bar's avatar
Bar committed
130
131
        stage_names = ['stage{}'.format(i) for i in [2, 3, 4]]
        for name, repeats, output_channels in zip(
Bar's avatar
Bar committed
132
                stage_names, stages_repeats, self._stage_out_channels[1:]):
133
            seq = [inverted_residual(input_channels, output_channels, 2)]
Bar's avatar
Bar committed
134
            for i in range(repeats - 1):
135
                seq.append(inverted_residual(output_channels, output_channels, 1))
Bar's avatar
Bar committed
136
137
138
            setattr(self, name, nn.Sequential(*seq))
            input_channels = output_channels

Bar's avatar
Bar committed
139
        output_channels = self._stage_out_channels[-1]
Bar's avatar
Bar committed
140
141
142
143
144
145
146
147
        self.conv5 = nn.Sequential(
            nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False),
            nn.BatchNorm2d(output_channels),
            nn.ReLU(inplace=True),
        )

        self.fc = nn.Linear(output_channels, num_classes)

148
    def _forward_impl(self, x: Tensor) -> Tensor:
149
        # See note [TorchScript super()]
Bar's avatar
Bar committed
150
151
152
153
154
155
156
157
158
159
        x = self.conv1(x)
        x = self.maxpool(x)
        x = self.stage2(x)
        x = self.stage3(x)
        x = self.stage4(x)
        x = self.conv5(x)
        x = x.mean([2, 3])  # globalpool
        x = self.fc(x)
        return x

160
    def forward(self, x: Tensor) -> Tensor:
161
        return self._forward_impl(x)
162

Bar's avatar
Bar committed
163

164
def _shufflenetv2(arch: str, pretrained: bool, progress: bool, *args: Any, **kwargs: Any) -> ShuffleNetV2:
Bar's avatar
Bar committed
165
    model = ShuffleNetV2(*args, **kwargs)
Bar's avatar
Bar committed
166
167

    if pretrained:
ekka's avatar
ekka committed
168
        model_url = model_urls[arch]
Bar's avatar
Bar committed
169
        if model_url is None:
ekka's avatar
ekka committed
170
171
            raise NotImplementedError('pretrained {} is not supported as of now'.format(arch))
        else:
172
            state_dict = load_state_dict_from_url(model_url, progress=progress)
ekka's avatar
ekka committed
173
            model.load_state_dict(state_dict)
Bar's avatar
Bar committed
174
175
176
177

    return model


178
def shufflenet_v2_x0_5(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ShuffleNetV2:
179
180
181
182
183
184
185
186
187
    """
    Constructs a ShuffleNetV2 with 0.5x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
    <https://arxiv.org/abs/1807.11164>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
Bar's avatar
Bar committed
188
189
    return _shufflenetv2('shufflenetv2_x0.5', pretrained, progress,
                         [4, 8, 4], [24, 48, 96, 192, 1024], **kwargs)
Bar's avatar
Bar committed
190
191


192
def shufflenet_v2_x1_0(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ShuffleNetV2:
193
194
195
196
197
198
199
200
201
    """
    Constructs a ShuffleNetV2 with 1.0x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
    <https://arxiv.org/abs/1807.11164>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
Bar's avatar
Bar committed
202
203
    return _shufflenetv2('shufflenetv2_x1.0', pretrained, progress,
                         [4, 8, 4], [24, 116, 232, 464, 1024], **kwargs)
Bar's avatar
Bar committed
204
205


206
def shufflenet_v2_x1_5(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ShuffleNetV2:
207
208
209
210
211
212
213
214
215
    """
    Constructs a ShuffleNetV2 with 1.5x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
    <https://arxiv.org/abs/1807.11164>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
Bar's avatar
Bar committed
216
217
    return _shufflenetv2('shufflenetv2_x1.5', pretrained, progress,
                         [4, 8, 4], [24, 176, 352, 704, 1024], **kwargs)
Bar's avatar
Bar committed
218
219


220
def shufflenet_v2_x2_0(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ShuffleNetV2:
221
222
223
224
225
226
227
228
229
    """
    Constructs a ShuffleNetV2 with 2.0x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
    <https://arxiv.org/abs/1807.11164>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
Bar's avatar
Bar committed
230
231
    return _shufflenetv2('shufflenetv2_x2.0', pretrained, progress,
                         [4, 8, 4], [24, 244, 488, 976, 2048], **kwargs)