_transforms_video.py 4.7 KB
Newer Older
Zhicheng Yan's avatar
Zhicheng Yan committed
1
2
3
4
#!/usr/bin/env python3

import numbers
import random
5
import warnings
Zhicheng Yan's avatar
Zhicheng Yan committed
6
7
8
9
10
11

from torchvision.transforms import (
    RandomCrop,
    RandomResizedCrop,
)

12
from . import _functional_video as F
Zhicheng Yan's avatar
Zhicheng Yan committed
13
14
15
16
17
18
19
20
21
22
23
24


__all__ = [
    "RandomCropVideo",
    "RandomResizedCropVideo",
    "CenterCropVideo",
    "NormalizeVideo",
    "ToTensorVideo",
    "RandomHorizontalFlipVideo",
]


25
warnings.warn("The _transforms_video module is deprecated. Please use the transforms module instead.")
26
27


Zhicheng Yan's avatar
Zhicheng Yan committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class RandomCropVideo(RandomCrop):
    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, clip):
        """
        Args:
            clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
        Returns:
            torch.tensor: randomly cropped/resized video clip.
                size is (C, T, OH, OW)
        """
        i, j, h, w = self.get_params(clip, self.size)
        return F.crop(clip, i, j, h, w)

    def __repr__(self):
47
        return self.__class__.__name__ + f"(size={self.size})"
Zhicheng Yan's avatar
Zhicheng Yan committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79


class RandomResizedCropVideo(RandomResizedCrop):
    def __init__(
        self,
        size,
        scale=(0.08, 1.0),
        ratio=(3.0 / 4.0, 4.0 / 3.0),
        interpolation_mode="bilinear",
    ):
        if isinstance(size, tuple):
            assert len(size) == 2, "size should be tuple (height, width)"
            self.size = size
        else:
            self.size = (size, size)

        self.interpolation_mode = interpolation_mode
        self.scale = scale
        self.ratio = ratio

    def __call__(self, clip):
        """
        Args:
            clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
        Returns:
            torch.tensor: randomly cropped/resized video clip.
                size is (C, T, H, W)
        """
        i, j, h, w = self.get_params(clip, self.scale, self.ratio)
        return F.resized_crop(clip, i, j, h, w, self.size, self.interpolation_mode)

    def __repr__(self):
80
81
82
        return (
            self.__class__.__name__
            + f"(size={self.size}, interpolation_mode={self.interpolation_mode}, scale={self.scale}, ratio={self.ratio})"
83
        )
Zhicheng Yan's avatar
Zhicheng Yan committed
84
85


86
class CenterCropVideo:
Zhicheng Yan's avatar
Zhicheng Yan committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    def __init__(self, crop_size):
        if isinstance(crop_size, numbers.Number):
            self.crop_size = (int(crop_size), int(crop_size))
        else:
            self.crop_size = crop_size

    def __call__(self, clip):
        """
        Args:
            clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
        Returns:
            torch.tensor: central cropping of video clip. Size is
            (C, T, crop_size, crop_size)
        """
        return F.center_crop(clip, self.crop_size)

    def __repr__(self):
104
        return self.__class__.__name__ + f"(crop_size={self.crop_size})"
Zhicheng Yan's avatar
Zhicheng Yan committed
105
106


107
class NormalizeVideo:
Zhicheng Yan's avatar
Zhicheng Yan committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    """
    Normalize the video clip by mean subtraction and division by standard deviation
    Args:
        mean (3-tuple): pixel RGB mean
        std (3-tuple): pixel RGB standard deviation
        inplace (boolean): whether do in-place normalization
    """

    def __init__(self, mean, std, inplace=False):
        self.mean = mean
        self.std = std
        self.inplace = inplace

    def __call__(self, clip):
        """
        Args:
            clip (torch.tensor): video clip to be normalized. Size is (C, T, H, W)
        """
        return F.normalize(clip, self.mean, self.std, self.inplace)

    def __repr__(self):
129
        return self.__class__.__name__ + f"(mean={self.mean}, std={self.std}, inplace={self.inplace})"
Zhicheng Yan's avatar
Zhicheng Yan committed
130
131


132
class ToTensorVideo:
Zhicheng Yan's avatar
Zhicheng Yan committed
133
134
    """
    Convert tensor data type from uint8 to float, divide value by 255.0 and
135
    permute the dimensions of clip tensor
Zhicheng Yan's avatar
Zhicheng Yan committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    """

    def __init__(self):
        pass

    def __call__(self, clip):
        """
        Args:
            clip (torch.tensor, dtype=torch.uint8): Size is (T, H, W, C)
        Return:
            clip (torch.tensor, dtype=torch.float): Size is (C, T, H, W)
        """
        return F.to_tensor(clip)

    def __repr__(self):
        return self.__class__.__name__


154
class RandomHorizontalFlipVideo:
Zhicheng Yan's avatar
Zhicheng Yan committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    """
    Flip the video clip along the horizonal direction with a given probability
    Args:
        p (float): probability of the clip being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
        self.p = p

    def __call__(self, clip):
        """
        Args:
            clip (torch.tensor): Size is (C, T, H, W)
        Return:
            clip (torch.tensor): Size is (C, T, H, W)
        """
        if random.random() < self.p:
            clip = F.hflip(clip)
        return clip

    def __repr__(self):
176
        return self.__class__.__name__ + f"(p={self.p})"