feature_pyramid_network.py 6.77 KB
Newer Older
1
from collections import OrderedDict
2
from typing import Tuple, List, Dict, Optional
3
4

import torch.nn.functional as F
eellison's avatar
eellison committed
5
6
from torch import nn, Tensor

7
8
9
10
11

class ExtraFPNBlock(nn.Module):
    """
    Base class for the extra block in the FPN.

12
    Args:
13
14
15
16
17
18
19
20
21
22
        results (List[Tensor]): the result of the FPN
        x (List[Tensor]): the original feature maps
        names (List[str]): the names for each one of the
            original feature maps

    Returns:
        results (List[Tensor]): the extended set of results
            of the FPN
        names (List[str]): the extended set of names for the results
    """
23

24
25
26
27
28
29
30
    def forward(
        self,
        results: List[Tensor],
        x: List[Tensor],
        names: List[str],
    ) -> Tuple[List[Tensor], List[str]]:
        pass
31
32
33
34


class FeaturePyramidNetwork(nn.Module):
    """
35
36
37
    Module that adds a FPN from on top of a set of feature maps. This is based on
    `"Feature Pyramid Network for Object Detection" <https://arxiv.org/abs/1612.03144>`_.

38
    The feature maps are currently supposed to be in increasing depth
39
40
41
42
43
    order.

    The input to the model is expected to be an OrderedDict[Tensor], containing
    the feature maps on top of which the FPN will be added.

44
    Args:
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
        in_channels_list (list[int]): number of channels for each feature map that
            is passed to the module
        out_channels (int): number of channels of the FPN representation
        extra_blocks (ExtraFPNBlock or None): if provided, extra operations will
            be performed. It is expected to take the fpn features, the original
            features and the names of the original features as input, and returns
            a new list of feature maps and their corresponding names

    Examples::

        >>> m = torchvision.ops.FeaturePyramidNetwork([10, 20, 30], 5)
        >>> # get some dummy data
        >>> x = OrderedDict()
        >>> x['feat0'] = torch.rand(1, 10, 64, 64)
        >>> x['feat2'] = torch.rand(1, 20, 16, 16)
        >>> x['feat3'] = torch.rand(1, 30, 8, 8)
        >>> # compute the FPN on top of x
        >>> output = m(x)
        >>> print([(k, v.shape) for k, v in output.items()])
        >>> # returns
        >>>   [('feat0', torch.Size([1, 5, 64, 64])),
        >>>    ('feat2', torch.Size([1, 5, 16, 16])),
        >>>    ('feat3', torch.Size([1, 5, 8, 8]))]

69
    """
70

71
72
73
74
75
76
    def __init__(
        self,
        in_channels_list: List[int],
        out_channels: int,
        extra_blocks: Optional[ExtraFPNBlock] = None,
    ):
77
        super().__init__()
78
79
80
81
        self.inner_blocks = nn.ModuleList()
        self.layer_blocks = nn.ModuleList()
        for in_channels in in_channels_list:
            if in_channels == 0:
eellison's avatar
eellison committed
82
                raise ValueError("in_channels=0 is currently not supported")
83
84
85
86
87
88
            inner_block_module = nn.Conv2d(in_channels, out_channels, 1)
            layer_block_module = nn.Conv2d(out_channels, out_channels, 3, padding=1)
            self.inner_blocks.append(inner_block_module)
            self.layer_blocks.append(layer_block_module)

        # initialize parameters now to avoid modifying the initialization of top_blocks
89
        for m in self.modules():
90
91
92
93
94
95
96
97
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_uniform_(m.weight, a=1)
                nn.init.constant_(m.bias, 0)

        if extra_blocks is not None:
            assert isinstance(extra_blocks, ExtraFPNBlock)
        self.extra_blocks = extra_blocks

98
    def get_result_from_inner_blocks(self, x: Tensor, idx: int) -> Tensor:
eellison's avatar
eellison committed
99
100
101
102
        """
        This is equivalent to self.inner_blocks[idx](x),
        but torchscript doesn't support this yet
        """
103
        num_blocks = len(self.inner_blocks)
eellison's avatar
eellison committed
104
105
106
        if idx < 0:
            idx += num_blocks
        out = x
107
        for i, module in enumerate(self.inner_blocks):
eellison's avatar
eellison committed
108
109
110
111
            if i == idx:
                out = module(x)
        return out

112
    def get_result_from_layer_blocks(self, x: Tensor, idx: int) -> Tensor:
eellison's avatar
eellison committed
113
114
115
116
        """
        This is equivalent to self.layer_blocks[idx](x),
        but torchscript doesn't support this yet
        """
117
        num_blocks = len(self.layer_blocks)
eellison's avatar
eellison committed
118
119
120
        if idx < 0:
            idx += num_blocks
        out = x
121
        for i, module in enumerate(self.layer_blocks):
eellison's avatar
eellison committed
122
123
124
125
            if i == idx:
                out = module(x)
        return out

126
    def forward(self, x: Dict[str, Tensor]) -> Dict[str, Tensor]:
127
        """
128
129
        Computes the FPN for a set of feature maps.

130
        Args:
131
            x (OrderedDict[Tensor]): feature maps for each feature level.
132

133
134
135
136
137
138
139
140
        Returns:
            results (OrderedDict[Tensor]): feature maps after FPN layers.
                They are ordered from highest resolution first.
        """
        # unpack OrderedDict into two lists for easier handling
        names = list(x.keys())
        x = list(x.values())

eellison's avatar
eellison committed
141
        last_inner = self.get_result_from_inner_blocks(x[-1], -1)
142
        results = []
eellison's avatar
eellison committed
143
144
145
146
        results.append(self.get_result_from_layer_blocks(last_inner, -1))

        for idx in range(len(x) - 2, -1, -1):
            inner_lateral = self.get_result_from_inner_blocks(x[idx], idx)
147
148
149
            feat_shape = inner_lateral.shape[-2:]
            inner_top_down = F.interpolate(last_inner, size=feat_shape, mode="nearest")
            last_inner = inner_lateral + inner_top_down
eellison's avatar
eellison committed
150
            results.insert(0, self.get_result_from_layer_blocks(last_inner, idx))
151
152
153
154
155
156
157
158
159
160
161

        if self.extra_blocks is not None:
            results, names = self.extra_blocks(results, x, names)

        # make it back an OrderedDict
        out = OrderedDict([(k, v) for k, v in zip(names, results)])

        return out


class LastLevelMaxPool(ExtraFPNBlock):
162
163
164
    """
    Applies a max_pool2d on top of the last feature map
    """
165

166
167
168
169
170
171
    def forward(
        self,
        x: List[Tensor],
        y: List[Tensor],
        names: List[str],
    ) -> Tuple[List[Tensor], List[str]]:
172
173
174
175
176
177
178
179
180
        names.append("pool")
        x.append(F.max_pool2d(x[-1], 1, 2, 0))
        return x, names


class LastLevelP6P7(ExtraFPNBlock):
    """
    This module is used in RetinaNet to generate extra layers, P6 and P7.
    """
181

182
    def __init__(self, in_channels: int, out_channels: int):
183
        super().__init__()
184
185
186
187
188
189
190
        self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
        self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
        for module in [self.p6, self.p7]:
            nn.init.kaiming_uniform_(module.weight, a=1)
            nn.init.constant_(module.bias, 0)
        self.use_P5 = in_channels == out_channels

191
192
193
194
195
196
    def forward(
        self,
        p: List[Tensor],
        c: List[Tensor],
        names: List[str],
    ) -> Tuple[List[Tensor], List[str]]:
197
198
199
200
201
202
203
        p5, c5 = p[-1], c[-1]
        x = p5 if self.use_P5 else c5
        p6 = self.p6(x)
        p7 = self.p7(F.relu(p6))
        p.extend([p6, p7])
        names.extend(["p6", "p7"])
        return p, names