mobilenetv2.py 7.41 KB
Newer Older
1
import warnings
2
3
4
from typing import Callable, Any, Optional, List

import torch
5
from torch import Tensor
6
7
from torch import nn

8
from .._internally_replaced_utils import load_state_dict_from_url
9
from ..ops.misc import ConvNormActivation
10
from ..utils import _log_api_usage_once
11
from ._utils import _make_divisible
12
13


14
__all__ = ["MobileNetV2", "mobilenet_v2"]
15
16
17


model_urls = {
18
    "mobilenet_v2": "https://download.pytorch.org/models/mobilenet_v2-b0353104.pth",
19
20
21
}


22
23
24
25
26
# necessary for backwards compatibility
class _DeprecatedConvBNAct(ConvNormActivation):
    def __init__(self, *args, **kwargs):
        warnings.warn(
            "The ConvBNReLU/ConvBNActivation classes are deprecated and will be removed in future versions. "
27
28
29
            "Use torchvision.ops.misc.ConvNormActivation instead.",
            FutureWarning,
        )
30
31
32
33
34
        if kwargs.get("norm_layer", None) is None:
            kwargs["norm_layer"] = nn.BatchNorm2d
        if kwargs.get("activation_layer", None) is None:
            kwargs["activation_layer"] = nn.ReLU6
        super().__init__(*args, **kwargs)
35
36


37
38
ConvBNReLU = _DeprecatedConvBNAct
ConvBNActivation = _DeprecatedConvBNAct
39
40
41
42


class InvertedResidual(nn.Module):
    def __init__(
43
        self, inp: int, oup: int, stride: int, expand_ratio: int, norm_layer: Optional[Callable[..., nn.Module]] = None
44
    ) -> None:
45
        super().__init__()
46
47
48
49
50
51
52
53
54
55
56
57
        self.stride = stride
        assert stride in [1, 2]

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        hidden_dim = int(round(inp * expand_ratio))
        self.use_res_connect = self.stride == 1 and inp == oup

        layers: List[nn.Module] = []
        if expand_ratio != 1:
            # pw
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
            layers.append(
                ConvNormActivation(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6)
            )
        layers.extend(
            [
                # dw
                ConvNormActivation(
                    hidden_dim,
                    hidden_dim,
                    stride=stride,
                    groups=hidden_dim,
                    norm_layer=norm_layer,
                    activation_layer=nn.ReLU6,
                ),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                norm_layer(oup),
            ]
        )
77
        self.conv = nn.Sequential(*layers)
78
        self.out_channels = oup
79
        self._is_cn = stride > 1
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

    def forward(self, x: Tensor) -> Tensor:
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileNetV2(nn.Module):
    def __init__(
        self,
        num_classes: int = 1000,
        width_mult: float = 1.0,
        inverted_residual_setting: Optional[List[List[int]]] = None,
        round_nearest: int = 8,
        block: Optional[Callable[..., nn.Module]] = None,
96
        norm_layer: Optional[Callable[..., nn.Module]] = None,
97
        dropout: float = 0.2,
98
99
100
101
102
103
104
105
106
107
108
109
    ) -> None:
        """
        MobileNet V2 main class

        Args:
            num_classes (int): Number of classes
            width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
            inverted_residual_setting: Network structure
            round_nearest (int): Round the number of channels in each layer to be a multiple of this number
            Set to 1 to turn off rounding
            block: Module specifying inverted residual building block for mobilenet
            norm_layer: Module specifying the normalization layer to use
110
            dropout (float): The droupout probability
111
112

        """
113
        super().__init__()
114
        _log_api_usage_once(self)
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

        if block is None:
            block = InvertedResidual

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        input_channel = 32
        last_channel = 1280

        if inverted_residual_setting is None:
            inverted_residual_setting = [
                # t, c, n, s
                [1, 16, 1, 1],
                [6, 24, 2, 2],
                [6, 32, 3, 2],
                [6, 64, 4, 2],
                [6, 96, 3, 1],
                [6, 160, 3, 2],
                [6, 320, 1, 1],
            ]

        # only check the first element, assuming user knows t,c,n,s are required
        if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
139
            raise ValueError(
140
                f"inverted_residual_setting should be non-empty or a 4-element list, got {inverted_residual_setting}"
141
            )
142
143
144
145

        # building first layer
        input_channel = _make_divisible(input_channel * width_mult, round_nearest)
        self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
146
147
148
        features: List[nn.Module] = [
            ConvNormActivation(3, input_channel, stride=2, norm_layer=norm_layer, activation_layer=nn.ReLU6)
        ]
149
150
151
152
153
154
155
156
        # building inverted residual blocks
        for t, c, n, s in inverted_residual_setting:
            output_channel = _make_divisible(c * width_mult, round_nearest)
            for i in range(n):
                stride = s if i == 0 else 1
                features.append(block(input_channel, output_channel, stride, expand_ratio=t, norm_layer=norm_layer))
                input_channel = output_channel
        # building last several layers
157
158
159
160
161
        features.append(
            ConvNormActivation(
                input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6
            )
        )
162
163
164
165
166
        # make it nn.Sequential
        self.features = nn.Sequential(*features)

        # building classifier
        self.classifier = nn.Sequential(
167
            nn.Dropout(p=dropout),
168
169
170
171
172
173
            nn.Linear(self.last_channel, num_classes),
        )

        # weight initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
174
                nn.init.kaiming_normal_(m.weight, mode="fan_out")
175
176
177
178
179
180
181
182
183
184
185
186
187
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        # This exists since TorchScript doesn't support inheritance, so the superclass method
        # (this one) needs to have a name other than `forward` that can be accessed in a subclass
        x = self.features(x)
188
189
190
        # Cannot use "squeeze" as batch-size can be 1
        x = nn.functional.adaptive_avg_pool2d(x, (1, 1))
        x = torch.flatten(x, 1)
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        x = self.classifier(x)
        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


def mobilenet_v2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> MobileNetV2:
    """
    Constructs a MobileNetV2 architecture from
    `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    model = MobileNetV2(**kwargs)
    if pretrained:
209
        state_dict = load_state_dict_from_url(model_urls["mobilenet_v2"], progress=progress)
210
211
        model.load_state_dict(state_dict)
    return model