ssd.py 26.2 KB
Newer Older
1
2
3
4
import warnings
from collections import OrderedDict
from typing import Any, Dict, List, Optional, Tuple

5
6
7
8
9
10
import torch
import torch.nn.functional as F
from torch import nn, Tensor

from ..._internally_replaced_utils import load_state_dict_from_url
from ...ops import boxes as box_ops
11
from ...utils import _log_api_usage_once
12
from .. import vgg
13
14
15
16
17
from . import _utils as det_utils
from .anchor_utils import DefaultBoxGenerator
from .backbone_utils import _validate_trainable_layers
from .transform import GeneralizedRCNNTransform

18
__all__ = ["SSD", "ssd300_vgg16"]
19
20

model_urls = {
21
    "ssd300_vgg16_coco": "https://download.pytorch.org/models/ssd300_vgg16_coco-b556d3b4.pth",
22
23
24
25
26
}

backbone_urls = {
    # We port the features of a VGG16 backbone trained by amdegroot because unlike the one on TorchVision, it uses the
    # same input standardization method as the paper. Ref: https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
27
28
    # Only the `features` weights have proper values, those on the `classifier` module are filled with nans.
    "vgg16_features": "https://download.pytorch.org/models/vgg16_features-amdegroot-88682ab5.pth"
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
}


def _xavier_init(conv: nn.Module):
    for layer in conv.modules():
        if isinstance(layer, nn.Conv2d):
            torch.nn.init.xavier_uniform_(layer.weight)
            if layer.bias is not None:
                torch.nn.init.constant_(layer.bias, 0.0)


class SSDHead(nn.Module):
    def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
        super().__init__()
        self.classification_head = SSDClassificationHead(in_channels, num_anchors, num_classes)
        self.regression_head = SSDRegressionHead(in_channels, num_anchors)

    def forward(self, x: List[Tensor]) -> Dict[str, Tensor]:
        return {
48
49
            "bbox_regression": self.regression_head(x),
            "cls_logits": self.classification_head(x),
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        }


class SSDScoringHead(nn.Module):
    def __init__(self, module_list: nn.ModuleList, num_columns: int):
        super().__init__()
        self.module_list = module_list
        self.num_columns = num_columns

    def _get_result_from_module_list(self, x: Tensor, idx: int) -> Tensor:
        """
        This is equivalent to self.module_list[idx](x),
        but torchscript doesn't support this yet
        """
        num_blocks = len(self.module_list)
        if idx < 0:
            idx += num_blocks
        out = x
68
        for i, module in enumerate(self.module_list):
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
            if i == idx:
                out = module(x)
        return out

    def forward(self, x: List[Tensor]) -> Tensor:
        all_results = []

        for i, features in enumerate(x):
            results = self._get_result_from_module_list(features, i)

            # Permute output from (N, A * K, H, W) to (N, HWA, K).
            N, _, H, W = results.shape
            results = results.view(N, -1, self.num_columns, H, W)
            results = results.permute(0, 3, 4, 1, 2)
            results = results.reshape(N, -1, self.num_columns)  # Size=(N, HWA, K)

            all_results.append(results)

        return torch.cat(all_results, dim=1)


class SSDClassificationHead(SSDScoringHead):
    def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int):
        cls_logits = nn.ModuleList()
        for channels, anchors in zip(in_channels, num_anchors):
            cls_logits.append(nn.Conv2d(channels, num_classes * anchors, kernel_size=3, padding=1))
        _xavier_init(cls_logits)
        super().__init__(cls_logits, num_classes)


class SSDRegressionHead(SSDScoringHead):
    def __init__(self, in_channels: List[int], num_anchors: List[int]):
        bbox_reg = nn.ModuleList()
        for channels, anchors in zip(in_channels, num_anchors):
            bbox_reg.append(nn.Conv2d(channels, 4 * anchors, kernel_size=3, padding=1))
        _xavier_init(bbox_reg)
        super().__init__(bbox_reg, 4)


class SSD(nn.Module):
    """
    Implements SSD architecture from `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes but they will be resized
    to a fixed size before passing it to the backbone.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
129
130
    follows, where ``N`` is the number of detections:

131
132
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
133
134
        - labels (Int64Tensor[N]): the predicted labels for each detection
        - scores (Tensor[N]): the scores for each detection
135
136
137
138
139
140
141
142
143

    Args:
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain an out_channels attribute with the list of the output channels of
            each feature map. The backbone should return a single Tensor or an OrderedDict[Tensor].
        anchor_generator (DefaultBoxGenerator): module that generates the default boxes for a
            set of feature maps.
        size (Tuple[int, int]): the width and height to which images will be rescaled before feeding them
            to the backbone.
144
        num_classes (int): number of output classes of the model (including the background).
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        head (nn.Module, optional): Module run on top of the backbone features. Defaults to a module containing
            a classification and regression module.
        score_thresh (float): Score threshold used for postprocessing the detections.
        nms_thresh (float): NMS threshold used for postprocessing the detections.
        detections_per_img (int): Number of best detections to keep after NMS.
        iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training.
        topk_candidates (int): Number of best detections to keep before NMS.
        positive_fraction (float): a number between 0 and 1 which indicates the proportion of positive
            proposals used during the training of the classification head. It is used to estimate the negative to
            positive ratio.
    """
162

163
    __annotations__ = {
164
165
        "box_coder": det_utils.BoxCoder,
        "proposal_matcher": det_utils.Matcher,
166
167
    }

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    def __init__(
        self,
        backbone: nn.Module,
        anchor_generator: DefaultBoxGenerator,
        size: Tuple[int, int],
        num_classes: int,
        image_mean: Optional[List[float]] = None,
        image_std: Optional[List[float]] = None,
        head: Optional[nn.Module] = None,
        score_thresh: float = 0.01,
        nms_thresh: float = 0.45,
        detections_per_img: int = 200,
        iou_thresh: float = 0.5,
        topk_candidates: int = 400,
        positive_fraction: float = 0.25,
    ):
184
        super().__init__()
185
        _log_api_usage_once(self)
186
187
188
189
190

        self.backbone = backbone

        self.anchor_generator = anchor_generator

191
        self.box_coder = det_utils.BoxCoder(weights=(10.0, 10.0, 5.0, 5.0))
192
193

        if head is None:
194
            if hasattr(backbone, "out_channels"):
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
                out_channels = backbone.out_channels
            else:
                out_channels = det_utils.retrieve_out_channels(backbone, size)

            assert len(out_channels) == len(anchor_generator.aspect_ratios)

            num_anchors = self.anchor_generator.num_anchors_per_location()
            head = SSDHead(out_channels, num_anchors, num_classes)
        self.head = head

        self.proposal_matcher = det_utils.SSDMatcher(iou_thresh)

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
211
212
213
        self.transform = GeneralizedRCNNTransform(
            min(size), max(size), image_mean, image_std, size_divisible=1, fixed_size=size
        )
214
215
216
217
218
219
220
221
222
223
224

        self.score_thresh = score_thresh
        self.nms_thresh = nms_thresh
        self.detections_per_img = detections_per_img
        self.topk_candidates = topk_candidates
        self.neg_to_pos_ratio = (1.0 - positive_fraction) / positive_fraction

        # used only on torchscript mode
        self._has_warned = False

    @torch.jit.unused
225
226
227
    def eager_outputs(
        self, losses: Dict[str, Tensor], detections: List[Dict[str, Tensor]]
    ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
228
229
230
231
232
        if self.training:
            return losses

        return detections

233
234
235
236
237
238
239
240
241
    def compute_loss(
        self,
        targets: List[Dict[str, Tensor]],
        head_outputs: Dict[str, Tensor],
        anchors: List[Tensor],
        matched_idxs: List[Tensor],
    ) -> Dict[str, Tensor]:
        bbox_regression = head_outputs["bbox_regression"]
        cls_logits = head_outputs["cls_logits"]
242
243
244
245
246

        # Match original targets with default boxes
        num_foreground = 0
        bbox_loss = []
        cls_targets = []
247
248
249
250
251
252
253
        for (
            targets_per_image,
            bbox_regression_per_image,
            cls_logits_per_image,
            anchors_per_image,
            matched_idxs_per_image,
        ) in zip(targets, bbox_regression, cls_logits, anchors, matched_idxs):
254
255
256
257
258
259
            # produce the matching between boxes and targets
            foreground_idxs_per_image = torch.where(matched_idxs_per_image >= 0)[0]
            foreground_matched_idxs_per_image = matched_idxs_per_image[foreground_idxs_per_image]
            num_foreground += foreground_matched_idxs_per_image.numel()

            # Calculate regression loss
260
            matched_gt_boxes_per_image = targets_per_image["boxes"][foreground_matched_idxs_per_image]
261
262
263
            bbox_regression_per_image = bbox_regression_per_image[foreground_idxs_per_image, :]
            anchors_per_image = anchors_per_image[foreground_idxs_per_image, :]
            target_regression = self.box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image)
264
265
266
            bbox_loss.append(
                torch.nn.functional.smooth_l1_loss(bbox_regression_per_image, target_regression, reduction="sum")
            )
267
268

            # Estimate ground truth for class targets
269
270
271
272
273
274
275
276
            gt_classes_target = torch.zeros(
                (cls_logits_per_image.size(0),),
                dtype=targets_per_image["labels"].dtype,
                device=targets_per_image["labels"].device,
            )
            gt_classes_target[foreground_idxs_per_image] = targets_per_image["labels"][
                foreground_matched_idxs_per_image
            ]
277
278
279
280
281
282
283
            cls_targets.append(gt_classes_target)

        bbox_loss = torch.stack(bbox_loss)
        cls_targets = torch.stack(cls_targets)

        # Calculate classification loss
        num_classes = cls_logits.size(-1)
284
285
286
        cls_loss = F.cross_entropy(cls_logits.view(-1, num_classes), cls_targets.view(-1), reduction="none").view(
            cls_targets.size()
        )
287
288
289
290
291
292

        # Hard Negative Sampling
        foreground_idxs = cls_targets > 0
        num_negative = self.neg_to_pos_ratio * foreground_idxs.sum(1, keepdim=True)
        # num_negative[num_negative < self.neg_to_pos_ratio] = self.neg_to_pos_ratio
        negative_loss = cls_loss.clone()
293
        negative_loss[foreground_idxs] = -float("inf")  # use -inf to detect positive values that creeped in the sample
294
295
296
297
298
299
        values, idx = negative_loss.sort(1, descending=True)
        # background_idxs = torch.logical_and(idx.sort(1)[1] < num_negative, torch.isfinite(values))
        background_idxs = idx.sort(1)[1] < num_negative

        N = max(1, num_foreground)
        return {
300
301
            "bbox_regression": bbox_loss.sum() / N,
            "classification": (cls_loss[foreground_idxs].sum() + cls_loss[background_idxs].sum()) / N,
302
303
        }

304
305
306
    def forward(
        self, images: List[Tensor], targets: Optional[List[Dict[str, Tensor]]] = None
    ) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]:
307
308
309
310
311
312
313
314
315
        if self.training and targets is None:
            raise ValueError("In training mode, targets should be passed")

        if self.training:
            assert targets is not None
            for target in targets:
                boxes = target["boxes"]
                if isinstance(boxes, torch.Tensor):
                    if len(boxes.shape) != 2 or boxes.shape[-1] != 4:
316
                        raise ValueError(f"Expected target boxes to be a tensor of shape [N, 4], got {boxes.shape}.")
317
                else:
318
                    raise ValueError(f"Expected target boxes to be of type Tensor, got {type(boxes)}.")
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

        # get the original image sizes
        original_image_sizes: List[Tuple[int, int]] = []
        for img in images:
            val = img.shape[-2:]
            assert len(val) == 2
            original_image_sizes.append((val[0], val[1]))

        # transform the input
        images, targets = self.transform(images, targets)

        # Check for degenerate boxes
        if targets is not None:
            for target_idx, target in enumerate(targets):
                boxes = target["boxes"]
                degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
                if degenerate_boxes.any():
                    bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
                    degen_bb: List[float] = boxes[bb_idx].tolist()
338
339
                    raise ValueError(
                        "All bounding boxes should have positive height and width."
340
                        f" Found invalid box {degen_bb} for target at index {target_idx}."
341
                    )
342
343
344
345

        # get the features from the backbone
        features = self.backbone(images.tensors)
        if isinstance(features, torch.Tensor):
346
            features = OrderedDict([("0", features)])
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

        features = list(features.values())

        # compute the ssd heads outputs using the features
        head_outputs = self.head(features)

        # create the set of anchors
        anchors = self.anchor_generator(images, features)

        losses = {}
        detections: List[Dict[str, Tensor]] = []
        if self.training:
            assert targets is not None

            matched_idxs = []
            for anchors_per_image, targets_per_image in zip(anchors, targets):
363
364
365
366
                if targets_per_image["boxes"].numel() == 0:
                    matched_idxs.append(
                        torch.full((anchors_per_image.size(0),), -1, dtype=torch.int64, device=anchors_per_image.device)
                    )
367
368
                    continue

369
                match_quality_matrix = box_ops.box_iou(targets_per_image["boxes"], anchors_per_image)
370
371
372
373
374
375
376
377
378
379
380
381
382
383
                matched_idxs.append(self.proposal_matcher(match_quality_matrix))

            losses = self.compute_loss(targets, head_outputs, anchors, matched_idxs)
        else:
            detections = self.postprocess_detections(head_outputs, anchors, images.image_sizes)
            detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)

        if torch.jit.is_scripting():
            if not self._has_warned:
                warnings.warn("SSD always returns a (Losses, Detections) tuple in scripting")
                self._has_warned = True
            return losses, detections
        return self.eager_outputs(losses, detections)

384
385
386
387
388
    def postprocess_detections(
        self, head_outputs: Dict[str, Tensor], image_anchors: List[Tensor], image_shapes: List[Tuple[int, int]]
    ) -> List[Dict[str, Tensor]]:
        bbox_regression = head_outputs["bbox_regression"]
        pred_scores = F.softmax(head_outputs["cls_logits"], dim=-1)
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

        num_classes = pred_scores.size(-1)
        device = pred_scores.device

        detections: List[Dict[str, Tensor]] = []

        for boxes, scores, anchors, image_shape in zip(bbox_regression, pred_scores, image_anchors, image_shapes):
            boxes = self.box_coder.decode_single(boxes, anchors)
            boxes = box_ops.clip_boxes_to_image(boxes, image_shape)

            image_boxes = []
            image_scores = []
            image_labels = []
            for label in range(1, num_classes):
                score = scores[:, label]

                keep_idxs = score > self.score_thresh
                score = score[keep_idxs]
                box = boxes[keep_idxs]

                # keep only topk scoring predictions
                num_topk = min(self.topk_candidates, score.size(0))
                score, idxs = score.topk(num_topk)
                box = box[idxs]

                image_boxes.append(box)
                image_scores.append(score)
                image_labels.append(torch.full_like(score, fill_value=label, dtype=torch.int64, device=device))

            image_boxes = torch.cat(image_boxes, dim=0)
            image_scores = torch.cat(image_scores, dim=0)
            image_labels = torch.cat(image_labels, dim=0)

            # non-maximum suppression
            keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh)
424
425
426
427
428
429
430
431
432
            keep = keep[: self.detections_per_img]

            detections.append(
                {
                    "boxes": image_boxes[keep],
                    "scores": image_scores[keep],
                    "labels": image_labels[keep],
                }
            )
433
434
435
436
        return detections


class SSDFeatureExtractorVGG(nn.Module):
437
    def __init__(self, backbone: nn.Module, highres: bool):
438
439
440
441
442
443
444
445
446
447
448
        super().__init__()

        _, _, maxpool3_pos, maxpool4_pos, _ = (i for i, layer in enumerate(backbone) if isinstance(layer, nn.MaxPool2d))

        # Patch ceil_mode for maxpool3 to get the same WxH output sizes as the paper
        backbone[maxpool3_pos].ceil_mode = True

        # parameters used for L2 regularization + rescaling
        self.scale_weight = nn.Parameter(torch.ones(512) * 20)

        # Multiple Feature maps - page 4, Fig 2 of SSD paper
449
        self.features = nn.Sequential(*backbone[:maxpool4_pos])  # until conv4_3
450
451

        # SSD300 case - page 4, Fig 2 of SSD paper
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
        extra = nn.ModuleList(
            [
                nn.Sequential(
                    nn.Conv2d(1024, 256, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(256, 512, kernel_size=3, padding=1, stride=2),  # conv8_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(512, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),  # conv9_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3),  # conv10_2
                    nn.ReLU(inplace=True),
                ),
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=3),  # conv11_2
                    nn.ReLU(inplace=True),
                ),
            ]
        )
480
481
        if highres:
            # Additional layers for the SSD512 case. See page 11, footernote 5.
482
483
484
485
486
487
488
489
            extra.append(
                nn.Sequential(
                    nn.Conv2d(256, 128, kernel_size=1),
                    nn.ReLU(inplace=True),
                    nn.Conv2d(128, 256, kernel_size=4),  # conv12_2
                    nn.ReLU(inplace=True),
                )
            )
490
491
492
493
494
495
496
        _xavier_init(extra)

        fc = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=False),  # add modified maxpool5
            nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, padding=6, dilation=6),  # FC6 with atrous
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=1024, out_channels=1024, kernel_size=1),  # FC7
497
            nn.ReLU(inplace=True),
498
499
        )
        _xavier_init(fc)
500
501
502
503
504
505
506
        extra.insert(
            0,
            nn.Sequential(
                *backbone[maxpool4_pos:-1],  # until conv5_3, skip maxpool5
                fc,
            ),
        )
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
        self.extra = extra

    def forward(self, x: Tensor) -> Dict[str, Tensor]:
        # L2 regularization + Rescaling of 1st block's feature map
        x = self.features(x)
        rescaled = self.scale_weight.view(1, -1, 1, 1) * F.normalize(x)
        output = [rescaled]

        # Calculating Feature maps for the rest blocks
        for block in self.extra:
            x = block(x)
            output.append(x)

        return OrderedDict([(str(i), v) for i, v in enumerate(output)])


523
524
def _vgg_extractor(backbone: vgg.VGG, highres: bool, trainable_layers: int):
    backbone = backbone.features
525
    # Gather the indices of maxpools. These are the locations of output blocks.
526
    stage_indices = [0] + [i for i, b in enumerate(backbone) if isinstance(b, nn.MaxPool2d)][:-1]
527
528
529
530
    num_stages = len(stage_indices)

    # find the index of the layer from which we wont freeze
    assert 0 <= trainable_layers <= num_stages
531
    freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]
532
533
534
535
536

    for b in backbone[:freeze_before]:
        for parameter in b.parameters():
            parameter.requires_grad_(False)

537
    return SSDFeatureExtractorVGG(backbone, highres)
538
539


540
541
542
543
544
545
546
547
def ssd300_vgg16(
    pretrained: bool = False,
    progress: bool = True,
    num_classes: int = 91,
    pretrained_backbone: bool = True,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
):
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    """Constructs an SSD model with input size 300x300 and a VGG16 backbone.

    Reference: `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes but they will be resized
    to a fixed size before passing it to the backbone.

    The behavior of the model changes depending if it is in training or evaluation mode.

    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
    containing:

        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the class label for each ground-truth box

    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows, where ``N`` is the number of detections:

        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
        - labels (Int64Tensor[N]): the predicted labels for each detection
        - scores (Tensor[N]): the scores for each detection
576
577
578
579
580

    Example:

        >>> model = torchvision.models.detection.ssd300_vgg16(pretrained=True)
        >>> model.eval()
581
        >>> x = [torch.rand(3, 300, 300), torch.rand(3, 500, 400)]
582
583
584
585
586
587
588
589
590
591
        >>> predictions = model(x)

    Args:
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
        num_classes (int): number of output classes of the model (including the background)
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
    """
592
593
594
    if "size" in kwargs:
        warnings.warn("The size of the model is already fixed; ignoring the argument.")

595
    trainable_backbone_layers = _validate_trainable_layers(
596
        pretrained or pretrained_backbone, trainable_backbone_layers, 5, 4
597
    )
598
599
600
601
602

    if pretrained:
        # no need to download the backbone if pretrained is set
        pretrained_backbone = False

603
604
605
606
607
608
609
    # Use custom backbones more appropriate for SSD
    backbone = vgg.vgg16(pretrained=False, progress=progress)
    if pretrained_backbone:
        state_dict = load_state_dict_from_url(backbone_urls["vgg16_features"], progress=progress)
        backbone.load_state_dict(state_dict)

    backbone = _vgg_extractor(backbone, False, trainable_backbone_layers)
610
611
612
613
614
    anchor_generator = DefaultBoxGenerator(
        [[2], [2, 3], [2, 3], [2, 3], [2], [2]],
        scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05],
        steps=[8, 16, 32, 64, 100, 300],
    )
615
616
617
618
619
620
621
622

    defaults = {
        # Rescale the input in a way compatible to the backbone
        "image_mean": [0.48235, 0.45882, 0.40784],
        "image_std": [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0],  # undo the 0-1 scaling of toTensor
    }
    kwargs = {**defaults, **kwargs}
    model = SSD(backbone, anchor_generator, (300, 300), num_classes, **kwargs)
623
    if pretrained:
624
        weights_name = "ssd300_vgg16_coco"
625
        if model_urls.get(weights_name, None) is None:
626
            raise ValueError(f"No checkpoint is available for model {weights_name}")
627
628
629
        state_dict = load_state_dict_from_url(model_urls[weights_name], progress=progress)
        model.load_state_dict(state_dict)
    return model