lfw.py 10 KB
Newer Older
Muhammed Abdullah's avatar
Muhammed Abdullah committed
1
2
import os
from typing import Any, Callable, List, Optional, Tuple
3

Muhammed Abdullah's avatar
Muhammed Abdullah committed
4
from PIL import Image
5

Muhammed Abdullah's avatar
Muhammed Abdullah committed
6
from .utils import check_integrity, download_and_extract_archive, download_url, verify_str_arg
7
from .vision import VisionDataset
Muhammed Abdullah's avatar
Muhammed Abdullah committed
8
9
10
11


class _LFW(VisionDataset):

12
    base_folder = "lfw-py"
Muhammed Abdullah's avatar
Muhammed Abdullah committed
13
14
15
    download_url_prefix = "http://vis-www.cs.umass.edu/lfw/"

    file_dict = {
16
17
18
        "original": ("lfw", "lfw.tgz", "a17d05bd522c52d84eca14327a23d494"),
        "funneled": ("lfw_funneled", "lfw-funneled.tgz", "1b42dfed7d15c9b2dd63d5e5840c86ad"),
        "deepfunneled": ("lfw-deepfunneled", "lfw-deepfunneled.tgz", "68331da3eb755a505a502b5aacb3c201"),
Muhammed Abdullah's avatar
Muhammed Abdullah committed
19
20
    }
    checksums = {
21
22
23
24
25
26
27
        "pairs.txt": "9f1ba174e4e1c508ff7cdf10ac338a7d",
        "pairsDevTest.txt": "5132f7440eb68cf58910c8a45a2ac10b",
        "pairsDevTrain.txt": "4f27cbf15b2da4a85c1907eb4181ad21",
        "people.txt": "450f0863dd89e85e73936a6d71a3474b",
        "peopleDevTest.txt": "e4bf5be0a43b5dcd9dc5ccfcb8fb19c5",
        "peopleDevTrain.txt": "54eaac34beb6d042ed3a7d883e247a21",
        "lfw-names.txt": "a6d0a479bd074669f656265a6e693f6d",
Muhammed Abdullah's avatar
Muhammed Abdullah committed
28
    }
29
    annot_file = {"10fold": "", "train": "DevTrain", "test": "DevTest"}
Muhammed Abdullah's avatar
Muhammed Abdullah committed
30
31
32
33
34
35
36
37
38
39
40
41
    names = "lfw-names.txt"

    def __init__(
        self,
        root: str,
        split: str,
        image_set: str,
        view: str,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        download: bool = False,
    ):
42
        super().__init__(os.path.join(root, self.base_folder), transform=transform, target_transform=target_transform)
Muhammed Abdullah's avatar
Muhammed Abdullah committed
43

44
        self.image_set = verify_str_arg(image_set.lower(), "image_set", self.file_dict.keys())
Muhammed Abdullah's avatar
Muhammed Abdullah committed
45
46
        images_dir, self.filename, self.md5 = self.file_dict[self.image_set]

47
48
        self.view = verify_str_arg(view.lower(), "view", ["people", "pairs"])
        self.split = verify_str_arg(split.lower(), "split", ["10fold", "train", "test"])
Muhammed Abdullah's avatar
Muhammed Abdullah committed
49
50
51
52
53
54
55
        self.labels_file = f"{self.view}{self.annot_file[self.split]}.txt"
        self.data: List[Any] = []

        if download:
            self.download()

        if not self._check_integrity():
56
            raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
Muhammed Abdullah's avatar
Muhammed Abdullah committed
57
58
59
60

        self.images_dir = os.path.join(self.root, images_dir)

    def _loader(self, path: str) -> Image.Image:
61
        with open(path, "rb") as f:
Muhammed Abdullah's avatar
Muhammed Abdullah committed
62
            img = Image.open(f)
63
            return img.convert("RGB")
Muhammed Abdullah's avatar
Muhammed Abdullah committed
64
65
66
67
68
69
70
71
72
73
74
75

    def _check_integrity(self):
        st1 = check_integrity(os.path.join(self.root, self.filename), self.md5)
        st2 = check_integrity(os.path.join(self.root, self.labels_file), self.checksums[self.labels_file])
        if not st1 or not st2:
            return False
        if self.view == "people":
            return check_integrity(os.path.join(self.root, self.names), self.checksums[self.names])
        return True

    def download(self):
        if self._check_integrity():
76
            print("Files already downloaded and verified")
Muhammed Abdullah's avatar
Muhammed Abdullah committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
            return
        url = f"{self.download_url_prefix}{self.filename}"
        download_and_extract_archive(url, self.root, filename=self.filename, md5=self.md5)
        download_url(f"{self.download_url_prefix}{self.labels_file}", self.root)
        if self.view == "people":
            download_url(f"{self.download_url_prefix}{self.names}", self.root)

    def _get_path(self, identity, no):
        return os.path.join(self.images_dir, identity, f"{identity}_{int(no):04d}.jpg")

    def extra_repr(self) -> str:
        return f"Alignment: {self.image_set}\nSplit: {self.split}"

    def __len__(self):
        return len(self.data)


class LFWPeople(_LFW):
    """`LFW <http://vis-www.cs.umass.edu/lfw/>`_ Dataset.

    Args:
        root (string): Root directory of dataset where directory
            ``lfw-py`` exists or will be saved to if download is set to True.
        split (string, optional): The image split to use. Can be one of ``train``, ``test``,
            ``10fold`` (default).
        image_set (str, optional): Type of image funneling to use, ``original``, ``funneled`` or
            ``deepfunneled``. Defaults to ``funneled``.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomRotation``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """

    def __init__(
        self,
        root: str,
        split: str = "10fold",
        image_set: str = "funneled",
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        download: bool = False,
    ):
123
        super().__init__(root, split, image_set, "people", transform, target_transform, download)
Muhammed Abdullah's avatar
Muhammed Abdullah committed
124
125
126
127
128
129

        self.class_to_idx = self._get_classes()
        self.data, self.targets = self._get_people()

    def _get_people(self):
        data, targets = [], []
130
        with open(os.path.join(self.root, self.labels_file)) as f:
Muhammed Abdullah's avatar
Muhammed Abdullah committed
131
132
133
134
135
            lines = f.readlines()
            n_folds, s = (int(lines[0]), 1) if self.split == "10fold" else (1, 0)

            for fold in range(n_folds):
                n_lines = int(lines[s])
136
                people = [line.strip().split("\t") for line in lines[s + 1 : s + n_lines + 1]]
Muhammed Abdullah's avatar
Muhammed Abdullah committed
137
138
139
140
141
142
143
144
145
146
                s += n_lines + 1
                for i, (identity, num_imgs) in enumerate(people):
                    for num in range(1, int(num_imgs) + 1):
                        img = self._get_path(identity, num)
                        data.append(img)
                        targets.append(self.class_to_idx[identity])

        return data, targets

    def _get_classes(self):
147
        with open(os.path.join(self.root, self.names)) as f:
Muhammed Abdullah's avatar
Muhammed Abdullah committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
            lines = f.readlines()
            names = [line.strip().split()[0] for line in lines]
        class_to_idx = {name: i for i, name in enumerate(names)}
        return class_to_idx

    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        """
        Args:
            index (int): Index

        Returns:
            tuple: Tuple (image, target) where target is the identity of the person.
        """
        img = self._loader(self.data[index])
        target = self.targets[index]

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def extra_repr(self) -> str:
173
        return super().extra_repr() + f"\nClasses (identities): {len(self.class_to_idx)}"
Muhammed Abdullah's avatar
Muhammed Abdullah committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204


class LFWPairs(_LFW):
    """`LFW <http://vis-www.cs.umass.edu/lfw/>`_ Dataset.

    Args:
        root (string): Root directory of dataset where directory
            ``lfw-py`` exists or will be saved to if download is set to True.
        split (string, optional): The image split to use. Can be one of ``train``, ``test``,
            ``10fold``. Defaults to ``10fold``.
        image_set (str, optional): Type of image funneling to use, ``original``, ``funneled`` or
            ``deepfunneled``. Defaults to ``funneled``.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomRotation``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """

    def __init__(
        self,
        root: str,
        split: str = "10fold",
        image_set: str = "funneled",
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        download: bool = False,
    ):
205
        super().__init__(root, split, image_set, "pairs", transform, target_transform, download)
Muhammed Abdullah's avatar
Muhammed Abdullah committed
206
207
208
209
210

        self.pair_names, self.data, self.targets = self._get_pairs(self.images_dir)

    def _get_pairs(self, images_dir):
        pair_names, data, targets = [], [], []
211
        with open(os.path.join(self.root, self.labels_file)) as f:
Muhammed Abdullah's avatar
Muhammed Abdullah committed
212
213
214
215
216
217
218
219
220
            lines = f.readlines()
            if self.split == "10fold":
                n_folds, n_pairs = lines[0].split("\t")
                n_folds, n_pairs = int(n_folds), int(n_pairs)
            else:
                n_folds, n_pairs = 1, int(lines[0])
            s = 1

            for fold in range(n_folds):
221
222
223
                matched_pairs = [line.strip().split("\t") for line in lines[s : s + n_pairs]]
                unmatched_pairs = [line.strip().split("\t") for line in lines[s + n_pairs : s + (2 * n_pairs)]]
                s += 2 * n_pairs
Muhammed Abdullah's avatar
Muhammed Abdullah committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
                for pair in matched_pairs:
                    img1, img2, same = self._get_path(pair[0], pair[1]), self._get_path(pair[0], pair[2]), 1
                    pair_names.append((pair[0], pair[0]))
                    data.append((img1, img2))
                    targets.append(same)
                for pair in unmatched_pairs:
                    img1, img2, same = self._get_path(pair[0], pair[1]), self._get_path(pair[2], pair[3]), 0
                    pair_names.append((pair[0], pair[2]))
                    data.append((img1, img2))
                    targets.append(same)

        return pair_names, data, targets

    def __getitem__(self, index: int) -> Tuple[Any, Any, int]:
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image1, image2, target) where target is `0` for different indentities and `1` for same identities.
        """
        img1, img2 = self.data[index]
        img1, img2 = self._loader(img1), self._loader(img2)
        target = self.targets[index]

        if self.transform is not None:
            img1, img2 = self.transform(img1), self.transform(img2)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img1, img2, target