kinetics.py 12.6 KB
Newer Older
1
import csv
2
import os
3
import time
4
5
6
import warnings
from functools import partial
from multiprocessing import Pool
7
8
9
from os import path
from typing import Any, Callable, Dict, Optional, Tuple

10
from torch import Tensor
11

12
from .folder import find_classes, make_dataset
13
from .utils import download_and_extract_archive, download_url, verify_str_arg, check_integrity
14
from .video_utils import VideoClips
15
16
17
from .vision import VisionDataset


18
def _dl_wrap(tarpath: str, videopath: str, line: str) -> None:
19
20
21
22
23
    download_and_extract_archive(line, tarpath, videopath)


class Kinetics(VisionDataset):
    """` Generic Kinetics <https://deepmind.com/research/open-source/open-source-datasets/kinetics/>`_
24
25
    dataset.

26
    Kinetics-400/600/700 are action recognition video datasets.
27
28
29
30
31
32
33
34
35
36
37
    This dataset consider every video as a collection of video clips of fixed size, specified
    by ``frames_per_clip``, where the step in frames between each clip is given by
    ``step_between_clips``.

    To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5``
    and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two
    elements will come from video 1, and the next three elements from video 2.
    Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all
    frames in a video might be present.

    Args:
38
39
        root (string): Root directory of the Kinetics Dataset.
            Directory should be structured as follows:
40
41
42
            .. code::

                root/
43
44
45
46
47
48
49
50
51
52
                ├── split
                │   ├──  class1
                │   │   ├──  clip1.mp4
                │   │   ├──  clip2.mp4
                │   │   ├──  clip3.mp4
                │   │   ├──  ...
                │   ├──  class2
                │   │   ├──   clipx.mp4
                │   │    └── ...
            Note: split is appended automatically using the split argument.
53
        frames_per_clip (int): number of frames in a clip
54
55
56
        num_classes (int): select between Kinetics-400 (default), Kinetics-600, and Kinetics-700
        split (str): split of the dataset to consider; supports ``"train"`` (default) ``"val"``
        frame_rate (float): If omitted, interpolate different frame rate for each clip.
57
58
59
        step_between_clips (int): number of frames between each clip
        transform (callable, optional): A function/transform that  takes in a TxHxWxC video
            and returns a transformed version.
60
61
62
        download (bool): Download the official version of the dataset to root folder.
        num_workers (int): Use multiple workers for VideoClips creation
        num_download_workers (int): Use multiprocessing in order to speed up download.
63
64

    Returns:
65
66
        tuple: A 3-tuple with the following entries:

67
            - video (Tensor[T, C, H, W]): the `T` video frames in torch.uint8 tensor
68
            - audio(Tensor[K, L]): the audio frames, where `K` is the number of channels
69
              and `L` is the number of points in torch.float tensor
70
            - label (int): class of the video clip
71
72
73

    Raises:
        RuntimeError: If ``download is True`` and the video archives are already extracted.
74
75
    """

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    _TAR_URLS = {
        "400": "https://s3.amazonaws.com/kinetics/400/{split}/k400_{split}_path.txt",
        "600": "https://s3.amazonaws.com/kinetics/600/{split}/k600_{split}_path.txt",
        "700": "https://s3.amazonaws.com/kinetics/700_2020/{split}/k700_2020_{split}_path.txt",
    }
    _ANNOTATION_URLS = {
        "400": "https://s3.amazonaws.com/kinetics/400/annotations/{split}.csv",
        "600": "https://s3.amazonaws.com/kinetics/600/annotations/{split}.txt",
        "700": "https://s3.amazonaws.com/kinetics/700_2020/annotations/{split}.csv",
    }

    def __init__(
        self,
        root: str,
        frames_per_clip: int,
        num_classes: str = "400",
        split: str = "train",
93
        frame_rate: Optional[int] = None,
94
95
96
97
98
99
        step_between_clips: int = 1,
        transform: Optional[Callable] = None,
        extensions: Tuple[str, ...] = ("avi", "mp4"),
        download: bool = False,
        num_download_workers: int = 1,
        num_workers: int = 1,
100
        _precomputed_metadata: Optional[Dict[str, Any]] = None,
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        _video_width: int = 0,
        _video_height: int = 0,
        _video_min_dimension: int = 0,
        _audio_samples: int = 0,
        _audio_channels: int = 0,
        _legacy: bool = False,
    ) -> None:

        # TODO: support test
        self.num_classes = verify_str_arg(num_classes, arg="num_classes", valid_values=["400", "600", "700"])
        self.extensions = extensions
        self.num_download_workers = num_download_workers

        self.root = root
        self._legacy = _legacy
        if _legacy:
            print("Using legacy structure")
            self.split_folder = root
            self.split = "unknown"
            assert not download, "Cannot download the videos using legacy_structure."
        else:
            self.split_folder = path.join(root, split)
            self.split = verify_str_arg(split, arg="split", valid_values=["train", "val"])

        if download:
            self.download_and_process_videos()

        super().__init__(self.root)
129

130
131
        self.classes, class_to_idx = find_classes(self.split_folder)
        self.samples = make_dataset(self.split_folder, class_to_idx, extensions, is_valid_file=None)
132
        video_list = [x[0] for x in self.samples]
133
134
135
136
137
138
        self.video_clips = VideoClips(
            video_list,
            frames_per_clip,
            step_between_clips,
            frame_rate,
            _precomputed_metadata,
139
140
141
142
143
            num_workers=num_workers,
            _video_width=_video_width,
            _video_height=_video_height,
            _video_min_dimension=_video_min_dimension,
            _audio_samples=_audio_samples,
144
            _audio_channels=_audio_channels,
145
        )
146
        self.transform = transform
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    def download_and_process_videos(self) -> None:
        """Downloads all the videos to the _root_ folder in the expected format."""
        tic = time.time()
        self._download_videos()
        toc = time.time()
        print("Elapsed time for downloading in mins ", (toc - tic) / 60)
        self._make_ds_structure()
        toc2 = time.time()
        print("Elapsed time for processing in mins ", (toc2 - toc) / 60)
        print("Elapsed time overall in mins ", (toc2 - tic) / 60)

    def _download_videos(self) -> None:
        """download tarballs containing the video to "tars" folder and extract them into the _split_ folder where
        split is one of the official dataset splits.

        Raises:
            RuntimeError: if download folder exists, break to prevent downloading entire dataset again.
        """
        if path.exists(self.split_folder):
            raise RuntimeError(
                f"The directory {self.split_folder} already exists. "
                f"If you want to re-download or re-extract the images, delete the directory."
            )
        tar_path = path.join(self.root, "tars")
        file_list_path = path.join(self.root, "files")

        split_url = self._TAR_URLS[self.num_classes].format(split=self.split)
        split_url_filepath = path.join(file_list_path, path.basename(split_url))
        if not check_integrity(split_url_filepath):
            download_url(split_url, file_list_path)
178
        list_video_urls = open(split_url_filepath)
179
180
181
182
183
184
185
186
187
188
189

        if self.num_download_workers == 1:
            for line in list_video_urls.readlines():
                line = str(line).replace("\n", "")
                download_and_extract_archive(line, tar_path, self.split_folder)
        else:
            part = partial(_dl_wrap, tar_path, self.split_folder)
            lines = [str(line).replace("\n", "") for line in list_video_urls.readlines()]
            poolproc = Pool(self.num_download_workers)
            poolproc.map(part, lines)

190
    def _make_ds_structure(self) -> None:
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        """move videos from
        split_folder/
            ├── clip1.avi
            ├── clip2.avi

        to the correct format as described below:
        split_folder/
            ├── class1
            │   ├── clip1.avi

        """
        annotation_path = path.join(self.root, "annotations")
        if not check_integrity(path.join(annotation_path, f"{self.split}.csv")):
            download_url(self._ANNOTATION_URLS[self.num_classes].format(split=self.split), annotation_path)
        annotations = path.join(annotation_path, f"{self.split}.csv")

        file_fmtstr = "{ytid}_{start:06}_{end:06}.mp4"
        with open(annotations) as csvfile:
            reader = csv.DictReader(csvfile)
            for row in reader:
                f = file_fmtstr.format(
                    ytid=row["youtube_id"],
                    start=int(row["time_start"]),
                    end=int(row["time_end"]),
                )
216
                label = row["label"].replace(" ", "_").replace("'", "").replace("(", "").replace(")", "")
217
218
219
220
                os.makedirs(path.join(self.split_folder, label), exist_ok=True)
                downloaded_file = path.join(self.split_folder, f)
                if path.isfile(downloaded_file):
                    os.replace(
221
222
                        downloaded_file,
                        path.join(self.split_folder, label, f),
223
224
                    )

225
    @property
226
    def metadata(self) -> Dict[str, Any]:
227
228
        return self.video_clips.metadata

229
    def __len__(self) -> int:
230
231
        return self.video_clips.num_clips()

232
    def __getitem__(self, idx: int) -> Tuple[Tensor, Tensor, int]:
233
        video, audio, info, video_idx = self.video_clips.get_clip(idx)
234
235
236
        if not self._legacy:
            # [T,H,W,C] --> [T,C,H,W]
            video = video.permute(0, 3, 1, 2)
237
238
        label = self.samples[video_idx][1]

239
240
241
        if self.transform is not None:
            video = self.transform(video)

242
        return video, audio, label
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299


class Kinetics400(Kinetics):
    """
    `Kinetics-400 <https://deepmind.com/research/open-source/open-source-datasets/kinetics/>`_
    dataset.

    Kinetics-400 is an action recognition video dataset.
    This dataset consider every video as a collection of video clips of fixed size, specified
    by ``frames_per_clip``, where the step in frames between each clip is given by
    ``step_between_clips``.

    To give an example, for 2 videos with 10 and 15 frames respectively, if ``frames_per_clip=5``
    and ``step_between_clips=5``, the dataset size will be (2 + 3) = 5, where the first two
    elements will come from video 1, and the next three elements from video 2.
    Note that we drop clips which do not have exactly ``frames_per_clip`` elements, so not all
    frames in a video might be present.

    Internally, it uses a VideoClips object to handle clip creation.

    Args:
        root (string): Root directory of the Kinetics-400 Dataset. Should be structured as follows:

            .. code::

                root/
                ├── class1
                │   ├── clip1.avi
                │   ├── clip2.avi
                │   ├── clip3.mp4
                │   └── ...
                └── class2
                    ├── clipx.avi
                    └── ...

        frames_per_clip (int): number of frames in a clip
        step_between_clips (int): number of frames between each clip
        transform (callable, optional): A function/transform that  takes in a TxHxWxC video
            and returns a transformed version.

    Returns:
        tuple: A 3-tuple with the following entries:

            - video (Tensor[T, H, W, C]): the `T` video frames
            - audio(Tensor[K, L]): the audio frames, where `K` is the number of channels
              and `L` is the number of points
            - label (int): class of the video clip
    """

    def __init__(
        self,
        root: str,
        frames_per_clip: int,
        num_classes: Any = None,
        split: Any = None,
        download: Any = None,
        num_download_workers: Any = None,
300
        **kwargs: Any,
301
    ) -> None:
302
303
        warnings.warn(
            "Kinetics400 is deprecated and will be removed in a future release."
304
305
            'It was replaced by Kinetics(..., num_classes="400").'
        )
306
307
308
309
310
311
        if any(value is not None for value in (num_classes, split, download, num_download_workers)):
            raise RuntimeError(
                "Usage of 'num_classes', 'split', 'download', or 'num_download_workers' is not supported in "
                "Kinetics400. Please use Kinetics instead."
            )

312
        super().__init__(
313
314
315
316
317
            root=root,
            frames_per_clip=frames_per_clip,
            _legacy=True,
            **kwargs,
        )