train.py 14.3 KB
Newer Older
1
2
3
import datetime
import os
import time
4
5

import presets
6
7
8
9
10
import torch
import torch.utils.data
import torchvision
import torchvision.datasets.video_utils
import utils
11
12
13
from torch import nn
from torch.utils.data.dataloader import default_collate
from torchvision.datasets.samplers import DistributedSampler, UniformClipSampler, RandomClipSampler
14

15
16
17
18
19
20
21
22
23
try:
    from apex import amp
except ImportError:
    amp = None


def train_one_epoch(model, criterion, optimizer, lr_scheduler, data_loader, device, epoch, print_freq, apex=False):
    model.train()
    metric_logger = utils.MetricLogger(delimiter="  ")
24
25
    metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value}"))
    metric_logger.add_meter("clips/s", utils.SmoothedValue(window_size=10, fmt="{value:.3f}"))
26

27
    header = f"Epoch: [{epoch}]"
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    for video, target in metric_logger.log_every(data_loader, print_freq, header):
        start_time = time.time()
        video, target = video.to(device), target.to(device)
        output = model(video)
        loss = criterion(output, target)

        optimizer.zero_grad()
        if apex:
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            loss.backward()
        optimizer.step()

        acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
        batch_size = video.shape[0]
        metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
45
46
47
        metric_logger.meters["acc1"].update(acc1.item(), n=batch_size)
        metric_logger.meters["acc5"].update(acc5.item(), n=batch_size)
        metric_logger.meters["clips/s"].update(batch_size / (time.time() - start_time))
48
49
50
51
52
53
        lr_scheduler.step()


def evaluate(model, criterion, data_loader, device):
    model.eval()
    metric_logger = utils.MetricLogger(delimiter="  ")
54
    header = "Test:"
55
    with torch.inference_mode():
56
57
58
59
60
61
62
63
64
65
66
        for video, target in metric_logger.log_every(data_loader, 100, header):
            video = video.to(device, non_blocking=True)
            target = target.to(device, non_blocking=True)
            output = model(video)
            loss = criterion(output, target)

            acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
            # FIXME need to take into account that the datasets
            # could have been padded in distributed setup
            batch_size = video.shape[0]
            metric_logger.update(loss=loss.item())
67
68
            metric_logger.meters["acc1"].update(acc1.item(), n=batch_size)
            metric_logger.meters["acc5"].update(acc5.item(), n=batch_size)
69
70
71
    # gather the stats from all processes
    metric_logger.synchronize_between_processes()

72
73
74
75
76
    print(
        " * Clip Acc@1 {top1.global_avg:.3f} Clip Acc@5 {top5.global_avg:.3f}".format(
            top1=metric_logger.acc1, top5=metric_logger.acc5
        )
    )
77
78
79
80
81
    return metric_logger.acc1.global_avg


def _get_cache_path(filepath):
    import hashlib
82

83
84
85
86
87
88
89
90
91
92
93
94
95
    h = hashlib.sha1(filepath.encode()).hexdigest()
    cache_path = os.path.join("~", ".torch", "vision", "datasets", "kinetics", h[:10] + ".pt")
    cache_path = os.path.expanduser(cache_path)
    return cache_path


def collate_fn(batch):
    # remove audio from the batch
    batch = [(d[0], d[2]) for d in batch]
    return default_collate(batch)


def main(args):
96
    if args.apex and amp is None:
97
98
99
100
        raise RuntimeError(
            "Failed to import apex. Please install apex from https://www.github.com/nvidia/apex "
            "to enable mixed-precision training."
        )
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

    if args.output_dir:
        utils.mkdir(args.output_dir)

    utils.init_distributed_mode(args)
    print(args)
    print("torch version: ", torch.__version__)
    print("torchvision version: ", torchvision.__version__)

    device = torch.device(args.device)

    torch.backends.cudnn.benchmark = True

    # Data loading code
    print("Loading data")
116
117
    traindir = os.path.join(args.data_path, args.train_dir)
    valdir = os.path.join(args.data_path, args.val_dir)
118
119
120
121

    print("Loading training data")
    st = time.time()
    cache_path = _get_cache_path(traindir)
122
    transform_train = presets.VideoClassificationPresetTrain((128, 171), (112, 112))
123
124

    if args.cache_dataset and os.path.exists(cache_path):
125
        print(f"Loading dataset_train from {cache_path}")
126
127
128
129
        dataset, _ = torch.load(cache_path)
        dataset.transform = transform_train
    else:
        if args.distributed:
130
            print("It is recommended to pre-compute the dataset cache on a single-gpu first, as it will be faster")
131
        dataset = torchvision.datasets.Kinetics400(
132
133
134
            traindir,
            frames_per_clip=args.clip_len,
            step_between_clips=1,
135
            transform=transform_train,
136
            frame_rate=15,
137
138
139
140
            extensions=(
                "avi",
                "mp4",
            ),
141
142
        )
        if args.cache_dataset:
143
            print(f"Saving dataset_train to {cache_path}")
144
145
146
147
148
149
150
151
            utils.mkdir(os.path.dirname(cache_path))
            utils.save_on_master((dataset, traindir), cache_path)

    print("Took", time.time() - st)

    print("Loading validation data")
    cache_path = _get_cache_path(valdir)

152
    transform_test = presets.VideoClassificationPresetEval((128, 171), (112, 112))
153
154

    if args.cache_dataset and os.path.exists(cache_path):
155
        print(f"Loading dataset_test from {cache_path}")
156
157
158
159
        dataset_test, _ = torch.load(cache_path)
        dataset_test.transform = transform_test
    else:
        if args.distributed:
160
            print("It is recommended to pre-compute the dataset cache on a single-gpu first, as it will be faster")
161
        dataset_test = torchvision.datasets.Kinetics400(
162
163
164
            valdir,
            frames_per_clip=args.clip_len,
            step_between_clips=1,
165
            transform=transform_test,
166
            frame_rate=15,
167
168
169
170
            extensions=(
                "avi",
                "mp4",
            ),
171
172
        )
        if args.cache_dataset:
173
            print(f"Saving dataset_test to {cache_path}")
174
175
176
177
            utils.mkdir(os.path.dirname(cache_path))
            utils.save_on_master((dataset_test, valdir), cache_path)

    print("Creating data loaders")
178
    train_sampler = RandomClipSampler(dataset.video_clips, args.clips_per_video)
179
180
181
182
183
184
    test_sampler = UniformClipSampler(dataset_test.video_clips, args.clips_per_video)
    if args.distributed:
        train_sampler = DistributedSampler(train_sampler)
        test_sampler = DistributedSampler(test_sampler)

    data_loader = torch.utils.data.DataLoader(
185
186
187
188
189
190
191
        dataset,
        batch_size=args.batch_size,
        sampler=train_sampler,
        num_workers=args.workers,
        pin_memory=True,
        collate_fn=collate_fn,
    )
192
193

    data_loader_test = torch.utils.data.DataLoader(
194
195
196
197
198
199
200
        dataset_test,
        batch_size=args.batch_size,
        sampler=test_sampler,
        num_workers=args.workers,
        pin_memory=True,
        collate_fn=collate_fn,
    )
201
202

    print("Creating model")
203
    model = torchvision.models.video.__dict__[args.model](pretrained=args.pretrained)
204
205
206
207
208
209
210
    model.to(device)
    if args.distributed and args.sync_bn:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)

    criterion = nn.CrossEntropyLoss()

    lr = args.lr * args.world_size
211
    optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=args.momentum, weight_decay=args.weight_decay)
212
213

    if args.apex:
214
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.apex_opt_level)
215
216
217

    # convert scheduler to be per iteration, not per epoch, for warmup that lasts
    # between different epochs
218
219
220
221
222
223
224
    iters_per_epoch = len(data_loader)
    lr_milestones = [iters_per_epoch * (m - args.lr_warmup_epochs) for m in args.lr_milestones]
    main_lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=lr_milestones, gamma=args.lr_gamma)

    if args.lr_warmup_epochs > 0:
        warmup_iters = iters_per_epoch * args.lr_warmup_epochs
        args.lr_warmup_method = args.lr_warmup_method.lower()
225
226
227
228
229
230
231
232
        if args.lr_warmup_method == "linear":
            warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
                optimizer, start_factor=args.lr_warmup_decay, total_iters=warmup_iters
            )
        elif args.lr_warmup_method == "constant":
            warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(
                optimizer, factor=args.lr_warmup_decay, total_iters=warmup_iters
            )
233
        else:
234
            raise RuntimeError(
235
                f"Invalid warmup lr method '{args.lr_warmup_method}'. Only linear and constant are supported."
236
            )
237
238

        lr_scheduler = torch.optim.lr_scheduler.SequentialLR(
239
            optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[warmup_iters]
240
241
242
        )
    else:
        lr_scheduler = main_lr_scheduler
243
244
245
246
247
248
249

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

    if args.resume:
250
251
252
253
254
        checkpoint = torch.load(args.resume, map_location="cpu")
        model_without_ddp.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
        args.start_epoch = checkpoint["epoch"] + 1
255
256
257
258
259
260
261
262
263
264

    if args.test_only:
        evaluate(model, criterion, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
265
266
267
        train_one_epoch(
            model, criterion, optimizer, lr_scheduler, data_loader, device, epoch, args.print_freq, args.apex
        )
268
269
270
        evaluate(model, criterion, data_loader_test, device=device)
        if args.output_dir:
            checkpoint = {
271
272
273
274
275
276
                "model": model_without_ddp.state_dict(),
                "optimizer": optimizer.state_dict(),
                "lr_scheduler": lr_scheduler.state_dict(),
                "epoch": epoch,
                "args": args,
            }
277
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
278
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
279
280
281

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
282
    print(f"Training time {total_time_str}")
283
284
285
286


def parse_args():
    import argparse
287
288
289

    parser = argparse.ArgumentParser(description="PyTorch Video Classification Training")

290
291
292
293
294
    parser.add_argument("--data-path", default="/datasets01_101/kinetics/070618/", type=str, help="dataset path")
    parser.add_argument("--train-dir", default="train_avi-480p", type=str, help="name of train dir")
    parser.add_argument("--val-dir", default="val_avi-480p", type=str, help="name of val dir")
    parser.add_argument("--model", default="r2plus1d_18", type=str, help="model name")
    parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
295
296
297
298
    parser.add_argument("--clip-len", default=16, type=int, metavar="N", help="number of frames per clip")
    parser.add_argument(
        "--clips-per-video", default=5, type=int, metavar="N", help="maximum number of clips per video to consider"
    )
299
300
301
    parser.add_argument(
        "-b", "--batch-size", default=24, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
    )
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
    parser.add_argument("--epochs", default=45, type=int, metavar="N", help="number of total epochs to run")
    parser.add_argument(
        "-j", "--workers", default=10, type=int, metavar="N", help="number of data loading workers (default: 10)"
    )
    parser.add_argument("--lr", default=0.01, type=float, help="initial learning rate")
    parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
    parser.add_argument(
        "--wd",
        "--weight-decay",
        default=1e-4,
        type=float,
        metavar="W",
        help="weight decay (default: 1e-4)",
        dest="weight_decay",
    )
    parser.add_argument("--lr-milestones", nargs="+", default=[20, 30, 40], type=int, help="decrease lr on milestones")
    parser.add_argument("--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma")
    parser.add_argument("--lr-warmup-epochs", default=10, type=int, help="the number of epochs to warmup (default: 10)")
    parser.add_argument("--lr-warmup-method", default="linear", type=str, help="the warmup method (default: linear)")
    parser.add_argument("--lr-warmup-decay", default=0.001, type=float, help="the decay for lr")
    parser.add_argument("--print-freq", default=10, type=int, help="print frequency")
323
324
    parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
    parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
325
    parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch")
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    parser.add_argument(
        "--cache-dataset",
        dest="cache_dataset",
        help="Cache the datasets for quicker initialization. It also serializes the transforms",
        action="store_true",
    )
    parser.add_argument(
        "--sync-bn",
        dest="sync_bn",
        help="Use sync batch norm",
        action="store_true",
    )
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )
    parser.add_argument(
        "--pretrained",
        dest="pretrained",
        help="Use pre-trained models from the modelzoo",
        action="store_true",
    )

    # Mixed precision training parameters
352
353
354
355
356
357
358
359
360
    parser.add_argument("--apex", action="store_true", help="Use apex for mixed precision training")
    parser.add_argument(
        "--apex-opt-level",
        default="O1",
        type=str,
        help="For apex mixed precision training"
        "O0 for FP32 training, O1 for mixed precision training."
        "For further detail, see https://github.com/NVIDIA/apex/tree/master/examples/imagenet",
    )
361
362

    # distributed training parameters
363
    parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
364
    parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
365
366
367
368
369
370
371
372
373

    args = parser.parse_args()

    return args


if __name__ == "__main__":
    args = parse_args()
    main(args)