train.py 5.72 KB
Newer Older
1
2
3
4
5
6
import os

import torch
import torchvision.transforms as transforms
from loss import TripletMarginLoss
from model import EmbeddingNet
7
8
9
10
from sampler import PKSampler
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision.datasets import FashionMNIST
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


def train_epoch(model, optimizer, criterion, data_loader, device, epoch, print_freq):
    model.train()
    running_loss = 0
    running_frac_pos_triplets = 0
    for i, data in enumerate(data_loader):
        optimizer.zero_grad()
        samples, targets = data[0].to(device), data[1].to(device)

        embeddings = model(samples)

        loss, frac_pos_triplets = criterion(embeddings, targets)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        running_frac_pos_triplets += float(frac_pos_triplets)

        if i % print_freq == print_freq - 1:
            i += 1
            avg_loss = running_loss / print_freq
            avg_trip = 100.0 * running_frac_pos_triplets / print_freq
34
            print(f"[{epoch:d}, {i:d}] | loss: {avg_loss:.4f} | % avg hard triplets: {avg_trip:.2f}%")
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
            running_loss = 0
            running_frac_pos_triplets = 0


def find_best_threshold(dists, targets, device):
    best_thresh = 0.01
    best_correct = 0
    for thresh in torch.arange(0.0, 1.51, 0.01):
        predictions = dists <= thresh.to(device)
        correct = torch.sum(predictions == targets.to(device)).item()
        if correct > best_correct:
            best_thresh = thresh
            best_correct = correct

    accuracy = 100.0 * best_correct / dists.size(0)

    return best_thresh, accuracy


54
@torch.inference_mode()
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def evaluate(model, loader, device):
    model.eval()
    embeds, labels = [], []
    dists, targets = None, None

    for data in loader:
        samples, _labels = data[0].to(device), data[1]
        out = model(samples)
        embeds.append(out)
        labels.append(_labels)

    embeds = torch.cat(embeds, dim=0)
    labels = torch.cat(labels, dim=0)

    dists = torch.cdist(embeds, embeds)

    labels = labels.unsqueeze(0)
    targets = labels == labels.t()

    mask = torch.ones(dists.size()).triu() - torch.eye(dists.size(0))
    dists = dists[mask == 1]
    targets = targets[mask == 1]

    threshold, accuracy = find_best_threshold(dists, targets, device)

80
    print(f"accuracy: {accuracy:.3f}%, threshold: {threshold:.2f}")
81
82
83


def save(model, epoch, save_dir, file_name):
84
    file_name = "epoch_" + str(epoch) + "__" + file_name
85
86
87
88
89
    save_path = os.path.join(save_dir, file_name)
    torch.save(model.state_dict(), save_path)


def main(args):
90
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
91
92
93
94
95
96
97
98
99
100
101
102
103
    p = args.labels_per_batch
    k = args.samples_per_label
    batch_size = p * k

    model = EmbeddingNet()
    if args.resume:
        model.load_state_dict(torch.load(args.resume))

    model.to(device)

    criterion = TripletMarginLoss(margin=args.margin)
    optimizer = Adam(model.parameters(), lr=args.lr)

104
105
106
    transform = transforms.Compose(
        [transforms.Lambda(lambda image: image.convert("RGB")), transforms.Resize((224, 224)), transforms.ToTensor()]
    )
107
108
109
110
111
112
113
114
115
116
117
118

    # Using FMNIST to demonstrate embedding learning using triplet loss. This dataset can
    # be replaced with any classification dataset.
    train_dataset = FashionMNIST(args.dataset_dir, train=True, transform=transform, download=True)
    test_dataset = FashionMNIST(args.dataset_dir, train=False, transform=transform, download=True)

    # targets is a list where the i_th element corresponds to the label of i_th dataset element.
    # This is required for PKSampler to randomly sample from exactly p classes. You will need to
    # construct targets while building your dataset. Some datasets (such as ImageFolder) have a
    # targets attribute with the same format.
    targets = train_dataset.targets.tolist()

119
120
121
122
    train_loader = DataLoader(
        train_dataset, batch_size=batch_size, sampler=PKSampler(targets, p, k), num_workers=args.workers
    )
    test_loader = DataLoader(test_dataset, batch_size=args.eval_batch_size, shuffle=False, num_workers=args.workers)
123
124

    for epoch in range(1, args.epochs + 1):
125
        print("Training...")
126
127
        train_epoch(model, optimizer, criterion, train_loader, device, epoch, args.print_freq)

128
        print("Evaluating...")
129
130
        evaluate(model, test_loader, device)

131
132
        print("Saving...")
        save(model, epoch, args.save_dir, "ckpt.pth")
133
134
135
136


def parse_args():
    import argparse
137
138
139

    parser = argparse.ArgumentParser(description="PyTorch Embedding Learning")

140
    parser.add_argument("--dataset-dir", default="/tmp/fmnist/", type=str, help="FashionMNIST dataset directory path")
141
142
143
144
    parser.add_argument(
        "-p", "--labels-per-batch", default=8, type=int, help="Number of unique labels/classes per batch"
    )
    parser.add_argument("-k", "--samples-per-label", default=8, type=int, help="Number of samples per label in a batch")
145
146
147
148
    parser.add_argument("--eval-batch-size", default=512, type=int, help="batch size for evaluation")
    parser.add_argument("--epochs", default=10, type=int, metavar="N", help="number of total epochs to run")
    parser.add_argument("-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers")
    parser.add_argument("--lr", default=0.0001, type=float, help="initial learning rate")
149
    parser.add_argument("--margin", default=0.2, type=float, help="Triplet loss margin")
150
151
152
    parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
    parser.add_argument("--save-dir", default=".", type=str, help="Model save directory")
    parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
153
154
155
156

    return parser.parse_args()


157
if __name__ == "__main__":
158
159
    args = parse_args()
    main(args)