utils.py 8.19 KB
Newer Older
1
import datetime
2
3
import errno
import os
4
import time
5
from collections import defaultdict, deque
6
7
8
9
10

import torch
import torch.distributed as dist


11
class SmoothedValue:
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
35
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
66
67
            median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
        )
68
69
70
71
72
73
74
75
76
77
78
79
80


def all_gather(data):
    """
    Run all_gather on arbitrary picklable data (not necessarily tensors)
    Args:
        data: any picklable object
    Returns:
        list[data]: list of data gathered from each rank
    """
    world_size = get_world_size()
    if world_size == 1:
        return [data]
81
82
    data_list = [None] * world_size
    dist.all_gather_object(data_list, data)
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    return data_list


def reduce_dict(input_dict, average=True):
    """
    Args:
        input_dict (dict): all the values will be reduced
        average (bool): whether to do average or sum
    Reduce the values in the dictionary from all processes so that all processes
    have the averaged results. Returns a dict with the same fields as
    input_dict, after reduction.
    """
    world_size = get_world_size()
    if world_size < 2:
        return input_dict
98
    with torch.inference_mode():
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        names = []
        values = []
        # sort the keys so that they are consistent across processes
        for k in sorted(input_dict.keys()):
            names.append(k)
            values.append(input_dict[k])
        values = torch.stack(values, dim=0)
        dist.all_reduce(values)
        if average:
            values /= world_size
        reduced_dict = {k: v for k, v in zip(names, values)}
    return reduced_dict


113
class MetricLogger:
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
130
        raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")
131
132
133
134

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
135
            loss_str.append(f"{name}: {str(meter)}")
136
137
138
139
140
141
142
143
144
145
146
147
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None):
        i = 0
        if not header:
148
            header = ""
149
150
        start_time = time.time()
        end = time.time()
151
152
153
        iter_time = SmoothedValue(fmt="{avg:.4f}")
        data_time = SmoothedValue(fmt="{avg:.4f}")
        space_fmt = ":" + str(len(str(len(iterable)))) + "d"
154
        if torch.cuda.is_available():
155
156
157
158
159
160
161
162
163
164
165
            log_msg = self.delimiter.join(
                [
                    header,
                    "[{0" + space_fmt + "}/{1}]",
                    "eta: {eta}",
                    "{meters}",
                    "time: {time}",
                    "data: {data}",
                    "max mem: {memory:.0f}",
                ]
            )
166
        else:
167
168
169
            log_msg = self.delimiter.join(
                [header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
            )
170
171
172
173
174
175
176
177
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % print_freq == 0 or i == len(iterable) - 1:
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
178
                if torch.cuda.is_available():
179
180
181
182
183
184
185
186
187
188
189
                    print(
                        log_msg.format(
                            i,
                            len(iterable),
                            eta=eta_string,
                            meters=str(self),
                            time=str(iter_time),
                            data=str(data_time),
                            memory=torch.cuda.max_memory_allocated() / MB,
                        )
                    )
190
                else:
191
192
193
194
195
                    print(
                        log_msg.format(
                            i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
                        )
                    )
196
197
198
199
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
200
        print(f"{header} Total time: {total_time_str} ({total_time / len(iterable):.4f} s / it)")
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219


def collate_fn(batch):
    return tuple(zip(*batch))


def mkdir(path):
    try:
        os.makedirs(path)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise


def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    import builtins as __builtin__
220

221
222
223
    builtin_print = __builtin__.print

    def print(*args, **kwargs):
224
        force = kwargs.pop("force", False)
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
        if is_master or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)


def init_distributed_mode(args):
261
    if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
262
        args.rank = int(os.environ["RANK"])
263
264
265
266
        args.world_size = int(os.environ["WORLD_SIZE"])
        args.gpu = int(os.environ["LOCAL_RANK"])
    elif "SLURM_PROCID" in os.environ:
        args.rank = int(os.environ["SLURM_PROCID"])
267
268
        args.gpu = args.rank % torch.cuda.device_count()
    else:
269
        print("Not using distributed mode")
270
271
272
273
274
275
        args.distributed = False
        return

    args.distributed = True

    torch.cuda.set_device(args.gpu)
276
    args.dist_backend = "nccl"
277
    print(f"| distributed init (rank {args.rank}): {args.dist_url}", flush=True)
278
279
280
    torch.distributed.init_process_group(
        backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
    )
281
282
    torch.distributed.barrier()
    setup_for_distributed(args.rank == 0)