train.py 9.55 KB
Newer Older
flauted's avatar
flauted committed
1
2
3
4
5
6
7
r"""PyTorch Detection Training.

To run in a multi-gpu environment, use the distributed launcher::

    python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
        train.py ... --world-size $NGPU

8
9
10
The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
    --lr 0.02 --batch-size 2 --world-size 8
If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
11
12
13
14
15
16
17
18

On top of that, for training Faster/Mask R-CNN, the default hyperparameters are
    --epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3

Also, if you train Keypoint R-CNN, the default hyperparameters are
    --epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3
Because the number of images is smaller in the person keypoint subset of COCO,
the number of epochs should be adapted so that we have the same number of iterations.
flauted's avatar
flauted committed
19
"""
20
21
22
23
import datetime
import os
import time

24
import presets
25
26
27
28
29
import torch
import torch.utils.data
import torchvision
import torchvision.models.detection
import torchvision.models.detection.mask_rcnn
30
import utils
31
32
from coco_utils import get_coco, get_coco_kp
from engine import train_one_epoch, evaluate
33
from group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
34
35


flauted's avatar
flauted committed
36
def get_dataset(name, image_set, transform, data_path):
37
    paths = {"coco": (data_path, get_coco, 91), "coco_kp": (data_path, get_coco_kp, 2)}
38
39
40
41
42
43
    p, ds_fn, num_classes = paths[name]

    ds = ds_fn(p, image_set=image_set, transforms=transform)
    return ds, num_classes


44
45
def get_transform(train, data_augmentation):
    return presets.DetectionPresetTrain(data_augmentation) if train else presets.DetectionPresetEval()
46
47


48
49
def get_args_parser(add_help=True):
    import argparse
50
51
52

    parser = argparse.ArgumentParser(description="PyTorch Detection Training", add_help=add_help)

53
54
55
56
    parser.add_argument("--data-path", default="/datasets01/COCO/022719/", type=str, help="dataset path")
    parser.add_argument("--dataset", default="coco", type=str, help="dataset name")
    parser.add_argument("--model", default="maskrcnn_resnet50_fpn", type=str, help="model name")
    parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
57
58
59
60
61
62
63
64
65
66
67
    parser.add_argument(
        "-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
    )
    parser.add_argument("--epochs", default=26, type=int, metavar="N", help="number of total epochs to run")
    parser.add_argument(
        "-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers (default: 4)"
    )
    parser.add_argument(
        "--lr",
        default=0.02,
        type=float,
68
        help="initial learning rate, 0.02 is the default value for training on 8 gpus and 2 images_per_gpu",
69
70
71
72
73
74
75
76
77
78
79
    )
    parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
    parser.add_argument(
        "--wd",
        "--weight-decay",
        default=1e-4,
        type=float,
        metavar="W",
        help="weight decay (default: 1e-4)",
        dest="weight_decay",
    )
80
81
82
    parser.add_argument(
        "--lr-scheduler", default="multisteplr", type=str, help="name of lr scheduler (default: multisteplr)"
    )
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    parser.add_argument(
        "--lr-step-size", default=8, type=int, help="decrease lr every step-size epochs (multisteplr scheduler only)"
    )
    parser.add_argument(
        "--lr-steps",
        default=[16, 22],
        nargs="+",
        type=int,
        help="decrease lr every step-size epochs (multisteplr scheduler only)",
    )
    parser.add_argument(
        "--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma (multisteplr scheduler only)"
    )
    parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
97
98
    parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
    parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
99
100
101
102
103
104
    parser.add_argument("--start_epoch", default=0, type=int, help="start epoch")
    parser.add_argument("--aspect-ratio-group-factor", default=3, type=int)
    parser.add_argument("--rpn-score-thresh", default=None, type=float, help="rpn score threshold for faster-rcnn")
    parser.add_argument(
        "--trainable-backbone-layers", default=None, type=int, help="number of trainable layers of backbone"
    )
105
106
107
    parser.add_argument(
        "--data-augmentation", default="hflip", type=str, help="data augmentation policy (default: hflip)"
    )
108
109
110
111
112
113
    parser.add_argument(
        "--sync-bn",
        dest="sync_bn",
        help="Use sync batch norm",
        action="store_true",
    )
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )
    parser.add_argument(
        "--pretrained",
        dest="pretrained",
        help="Use pre-trained models from the modelzoo",
        action="store_true",
    )

    # distributed training parameters
128
    parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
129
    parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
130
131
132
133

    return parser


134
def main(args):
135
136
137
    if args.output_dir:
        utils.mkdir(args.output_dir)

138
139
140
141
142
143
144
145
    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

    # Data loading code
    print("Loading data")

146
147
148
    dataset, num_classes = get_dataset(
        args.dataset, "train", get_transform(True, args.data_augmentation), args.data_path
    )
149
    dataset_test, _ = get_dataset(args.dataset, "val", get_transform(False, args.data_augmentation), args.data_path)
150
151
152
153
154
155
156
157
158
159
160
161
162

    print("Creating data loaders")
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    if args.aspect_ratio_group_factor >= 0:
        group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
        train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
    else:
163
        train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, args.batch_size, drop_last=True)
164
165

    data_loader = torch.utils.data.DataLoader(
166
167
        dataset, batch_sampler=train_batch_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
    )
168
169

    data_loader_test = torch.utils.data.DataLoader(
170
171
        dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
    )
172
173

    print("Creating model")
174
    kwargs = {"trainable_backbone_layers": args.trainable_backbone_layers}
175
    if "rcnn" in args.model:
176
177
        if args.rpn_score_thresh is not None:
            kwargs["rpn_score_thresh"] = args.rpn_score_thresh
178
179
180
    model = torchvision.models.detection.__dict__[args.model](
        num_classes=num_classes, pretrained=args.pretrained, **kwargs
    )
181
    model.to(device)
182
183
    if args.distributed and args.sync_bn:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
184
185
186
187
188
189
190

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

    params = [p for p in model.parameters() if p.requires_grad]
191
    optimizer = torch.optim.SGD(params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
192

193
    args.lr_scheduler = args.lr_scheduler.lower()
194
    if args.lr_scheduler == "multisteplr":
195
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
196
    elif args.lr_scheduler == "cosineannealinglr":
197
198
        lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
    else:
199
        raise RuntimeError(
200
            f"Invalid lr scheduler '{args.lr_scheduler}'. Only MultiStepLR and CosineAnnealingLR are supported."
201
        )
Francisco Massa's avatar
Francisco Massa committed
202

203
    if args.resume:
204
205
206
207
208
        checkpoint = torch.load(args.resume, map_location="cpu")
        model_without_ddp.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
        args.start_epoch = checkpoint["epoch"] + 1
Francisco Massa's avatar
Francisco Massa committed
209

210
211
212
213
214
215
    if args.test_only:
        evaluate(model, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
MultiK's avatar
MultiK committed
216
    for epoch in range(args.start_epoch, args.epochs):
217
218
219
220
221
        if args.distributed:
            train_sampler.set_epoch(epoch)
        train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq)
        lr_scheduler.step()
        if args.output_dir:
222
            checkpoint = {
223
224
225
226
227
                "model": model_without_ddp.state_dict(),
                "optimizer": optimizer.state_dict(),
                "lr_scheduler": lr_scheduler.state_dict(),
                "args": args,
                "epoch": epoch,
228
            }
229
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
230
            utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
231
232
233
234
235
236

        # evaluate after every epoch
        evaluate(model, data_loader_test, device=device)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
237
    print(f"Training time {total_time_str}")
238
239
240


if __name__ == "__main__":
241
    args = get_args_parser().parse_args()
242
    main(args)