coco_utils.py 8.53 KB
Newer Older
1
2
3
4
5
6
import copy
import os

import torch
import torch.utils.data
import torchvision
7
import transforms as T
8
9
10
11
from pycocotools import mask as coco_mask
from pycocotools.coco import COCO


12
class FilterAndRemapCocoCategories:
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    def __init__(self, categories, remap=True):
        self.categories = categories
        self.remap = remap

    def __call__(self, image, target):
        anno = target["annotations"]
        anno = [obj for obj in anno if obj["category_id"] in self.categories]
        if not self.remap:
            target["annotations"] = anno
            return image, target
        anno = copy.deepcopy(anno)
        for obj in anno:
            obj["category_id"] = self.categories.index(obj["category_id"])
        target["annotations"] = anno
        return image, target


def convert_coco_poly_to_mask(segmentations, height, width):
    masks = []
    for polygons in segmentations:
        rles = coco_mask.frPyObjects(polygons, height, width)
        mask = coco_mask.decode(rles)
        if len(mask.shape) < 3:
            mask = mask[..., None]
        mask = torch.as_tensor(mask, dtype=torch.uint8)
        mask = mask.any(dim=2)
        masks.append(mask)
    if masks:
        masks = torch.stack(masks, dim=0)
    else:
        masks = torch.zeros((0, height, width), dtype=torch.uint8)
    return masks


47
class ConvertCocoPolysToMask:
48
49
50
51
52
53
54
55
    def __call__(self, image, target):
        w, h = image.size

        image_id = target["image_id"]
        image_id = torch.tensor([image_id])

        anno = target["annotations"]

56
        anno = [obj for obj in anno if obj["iscrowd"] == 0]
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

        boxes = [obj["bbox"] for obj in anno]
        # guard against no boxes via resizing
        boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
        boxes[:, 2:] += boxes[:, :2]
        boxes[:, 0::2].clamp_(min=0, max=w)
        boxes[:, 1::2].clamp_(min=0, max=h)

        classes = [obj["category_id"] for obj in anno]
        classes = torch.tensor(classes, dtype=torch.int64)

        segmentations = [obj["segmentation"] for obj in anno]
        masks = convert_coco_poly_to_mask(segmentations, h, w)

        keypoints = None
        if anno and "keypoints" in anno[0]:
            keypoints = [obj["keypoints"] for obj in anno]
            keypoints = torch.as_tensor(keypoints, dtype=torch.float32)
            num_keypoints = keypoints.shape[0]
            if num_keypoints:
                keypoints = keypoints.view(num_keypoints, -1, 3)

        keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
        boxes = boxes[keep]
        classes = classes[keep]
        masks = masks[keep]
        if keypoints is not None:
            keypoints = keypoints[keep]

        target = {}
        target["boxes"] = boxes
        target["labels"] = classes
        target["masks"] = masks
        target["image_id"] = image_id
        if keypoints is not None:
            target["keypoints"] = keypoints

        # for conversion to coco api
        area = torch.tensor([obj["area"] for obj in anno])
        iscrowd = torch.tensor([obj["iscrowd"] for obj in anno])
        target["area"] = area
        target["iscrowd"] = iscrowd

        return image, target


def _coco_remove_images_without_annotations(dataset, cat_list=None):
    def _has_only_empty_bbox(anno):
        return all(any(o <= 1 for o in obj["bbox"][2:]) for obj in anno)

    def _count_visible_keypoints(anno):
        return sum(sum(1 for v in ann["keypoints"][2::3] if v > 0) for ann in anno)

    min_keypoints_per_image = 10

    def _has_valid_annotation(anno):
        # if it's empty, there is no annotation
        if len(anno) == 0:
            return False
        # if all boxes have close to zero area, there is no annotation
        if _has_only_empty_bbox(anno):
            return False
        # keypoints task have a slight different critera for considering
        # if an annotation is valid
        if "keypoints" not in anno[0]:
            return True
        # for keypoint detection tasks, only consider valid images those
        # containing at least min_keypoints_per_image
        if _count_visible_keypoints(anno) >= min_keypoints_per_image:
            return True
        return False

    assert isinstance(dataset, torchvision.datasets.CocoDetection)
    ids = []
    for ds_idx, img_id in enumerate(dataset.ids):
        ann_ids = dataset.coco.getAnnIds(imgIds=img_id, iscrowd=None)
        anno = dataset.coco.loadAnns(ann_ids)
        if cat_list:
            anno = [obj for obj in anno if obj["category_id"] in cat_list]
        if _has_valid_annotation(anno):
            ids.append(ds_idx)

    dataset = torch.utils.data.Subset(dataset, ids)
    return dataset


def convert_to_coco_api(ds):
    coco_ds = COCO()
145
146
    # annotation IDs need to start at 1, not 0, see torchvision issue #1530
    ann_id = 1
147
    dataset = {"images": [], "categories": [], "annotations": []}
148
149
150
151
    categories = set()
    for img_idx in range(len(ds)):
        # find better way to get target
        # targets = ds.get_annotations(img_idx)
152
        img, targets = ds[img_idx]
153
154
        image_id = targets["image_id"].item()
        img_dict = {}
155
156
157
158
        img_dict["id"] = image_id
        img_dict["height"] = img.shape[-2]
        img_dict["width"] = img.shape[-1]
        dataset["images"].append(img_dict)
159
160
161
        bboxes = targets["boxes"]
        bboxes[:, 2:] -= bboxes[:, :2]
        bboxes = bboxes.tolist()
162
163
164
165
166
        labels = targets["labels"].tolist()
        areas = targets["area"].tolist()
        iscrowd = targets["iscrowd"].tolist()
        if "masks" in targets:
            masks = targets["masks"]
167
168
            # make masks Fortran contiguous for coco_mask
            masks = masks.permute(0, 2, 1).contiguous().permute(0, 2, 1)
169
170
        if "keypoints" in targets:
            keypoints = targets["keypoints"]
171
            keypoints = keypoints.reshape(keypoints.shape[0], -1).tolist()
172
173
174
        num_objs = len(bboxes)
        for i in range(num_objs):
            ann = {}
175
176
177
            ann["image_id"] = image_id
            ann["bbox"] = bboxes[i]
            ann["category_id"] = labels[i]
178
            categories.add(labels[i])
179
180
181
182
            ann["area"] = areas[i]
            ann["iscrowd"] = iscrowd[i]
            ann["id"] = ann_id
            if "masks" in targets:
183
                ann["segmentation"] = coco_mask.encode(masks[i].numpy())
184
185
186
187
            if "keypoints" in targets:
                ann["keypoints"] = keypoints[i]
                ann["num_keypoints"] = sum(k != 0 for k in keypoints[i][2::3])
            dataset["annotations"].append(ann)
188
            ann_id += 1
189
    dataset["categories"] = [{"id": i} for i in sorted(categories)]
190
191
192
193
194
195
    coco_ds.dataset = dataset
    coco_ds.createIndex()
    return coco_ds


def get_coco_api_from_dataset(dataset):
Francisco Massa's avatar
Francisco Massa committed
196
    for _ in range(10):
197
198
199
200
201
202
203
204
205
206
207
        if isinstance(dataset, torchvision.datasets.CocoDetection):
            break
        if isinstance(dataset, torch.utils.data.Subset):
            dataset = dataset.dataset
    if isinstance(dataset, torchvision.datasets.CocoDetection):
        return dataset.coco
    return convert_to_coco_api(dataset)


class CocoDetection(torchvision.datasets.CocoDetection):
    def __init__(self, img_folder, ann_file, transforms):
208
        super().__init__(img_folder, ann_file)
209
210
211
        self._transforms = transforms

    def __getitem__(self, idx):
212
        img, target = super().__getitem__(idx)
213
214
215
216
217
218
219
        image_id = self.ids[idx]
        target = dict(image_id=image_id, annotations=target)
        if self._transforms is not None:
            img, target = self._transforms(img, target)
        return img, target


220
def get_coco(root, image_set, transforms, mode="instances"):
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    anno_file_template = "{}_{}2017.json"
    PATHS = {
        "train": ("train2017", os.path.join("annotations", anno_file_template.format(mode, "train"))),
        "val": ("val2017", os.path.join("annotations", anno_file_template.format(mode, "val"))),
        # "train": ("val2017", os.path.join("annotations", anno_file_template.format(mode, "val")))
    }

    t = [ConvertCocoPolysToMask()]

    if transforms is not None:
        t.append(transforms)
    transforms = T.Compose(t)

    img_folder, ann_file = PATHS[image_set]
    img_folder = os.path.join(root, img_folder)
    ann_file = os.path.join(root, ann_file)

    dataset = CocoDetection(img_folder, ann_file, transforms=transforms)

    if image_set == "train":
        dataset = _coco_remove_images_without_annotations(dataset)

    # dataset = torch.utils.data.Subset(dataset, [i for i in range(500)])

    return dataset


def get_coco_kp(root, image_set, transforms):
    return get_coco(root, image_set, transforms, mode="person_keypoints")