"vscode:/vscode.git/clone" did not exist on "e70db18b63237975f989f71abf12b0615ec43e4c"
train.py 8.02 KB
Newer Older
flauted's avatar
flauted committed
1
2
3
4
5
6
7
r"""PyTorch Detection Training.

To run in a multi-gpu environment, use the distributed launcher::

    python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
        train.py ... --world-size $NGPU

8
9
10
The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
    --lr 0.02 --batch-size 2 --world-size 8
If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
11
12
13
14
15
16
17
18

On top of that, for training Faster/Mask R-CNN, the default hyperparameters are
    --epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3

Also, if you train Keypoint R-CNN, the default hyperparameters are
    --epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3
Because the number of images is smaller in the person keypoint subset of COCO,
the number of epochs should be adapted so that we have the same number of iterations.
flauted's avatar
flauted committed
19
"""
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import datetime
import os
import time

import torch
import torch.utils.data
from torch import nn
import torchvision
import torchvision.models.detection
import torchvision.models.detection.mask_rcnn

from coco_utils import get_coco, get_coco_kp

from group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
from engine import train_one_epoch, evaluate

import utils
import transforms as T


flauted's avatar
flauted committed
40
def get_dataset(name, image_set, transform, data_path):
41
    paths = {
flauted's avatar
flauted committed
42
43
        "coco": (data_path, get_coco, 91),
        "coco_kp": (data_path, get_coco_kp, 2)
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    }
    p, ds_fn, num_classes = paths[name]

    ds = ds_fn(p, image_set=image_set, transforms=transform)
    return ds, num_classes


def get_transform(train):
    transforms = []
    transforms.append(T.ToTensor())
    if train:
        transforms.append(T.RandomHorizontalFlip(0.5))
    return T.Compose(transforms)


def main(args):
    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

    # Data loading code
    print("Loading data")

flauted's avatar
flauted committed
68
69
    dataset, num_classes = get_dataset(args.dataset, "train", get_transform(train=True), args.data_path)
    dataset_test, _ = get_dataset(args.dataset, "val", get_transform(train=False), args.data_path)
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

    print("Creating data loaders")
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    if args.aspect_ratio_group_factor >= 0:
        group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
        train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
    else:
        train_batch_sampler = torch.utils.data.BatchSampler(
            train_sampler, args.batch_size, drop_last=True)

    data_loader = torch.utils.data.DataLoader(
        dataset, batch_sampler=train_batch_sampler, num_workers=args.workers,
        collate_fn=utils.collate_fn)

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test, batch_size=1,
        sampler=test_sampler, num_workers=args.workers,
        collate_fn=utils.collate_fn)

    print("Creating model")
96
97
    model = torchvision.models.detection.__dict__[args.model](num_classes=num_classes,
                                                              pretrained=args.pretrained)
98
99
100
101
102
103
104
105
106
107
108
109
110
    model.to(device)

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = torch.optim.SGD(
        params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)

    # lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
    lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
Francisco Massa's avatar
Francisco Massa committed
111

112
113
114
115
116
    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
MultiK's avatar
MultiK committed
117
        args.start_epoch = checkpoint['epoch'] + 1
Francisco Massa's avatar
Francisco Massa committed
118

119
120
121
122
123
124
    if args.test_only:
        evaluate(model, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
MultiK's avatar
MultiK committed
125
    for epoch in range(args.start_epoch, args.epochs):
126
127
128
129
130
131
132
133
134
        if args.distributed:
            train_sampler.set_epoch(epoch)
        train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq)
        lr_scheduler.step()
        if args.output_dir:
            utils.save_on_master({
                'model': model_without_ddp.state_dict(),
                'optimizer': optimizer.state_dict(),
                'lr_scheduler': lr_scheduler.state_dict(),
MultiK's avatar
MultiK committed
135
136
                'args': args,
                'epoch': epoch},
137
138
139
140
141
142
143
144
145
146
147
148
                os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))

        # evaluate after every epoch
        evaluate(model, data_loader_test, device=device)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))


if __name__ == "__main__":
    import argparse
flauted's avatar
flauted committed
149
150
    parser = argparse.ArgumentParser(
        description=__doc__)
151
152
153
154
155

    parser.add_argument('--data-path', default='/datasets01/COCO/022719/', help='dataset')
    parser.add_argument('--dataset', default='coco', help='dataset')
    parser.add_argument('--model', default='maskrcnn_resnet50_fpn', help='model')
    parser.add_argument('--device', default='cuda', help='device')
156
157
    parser.add_argument('-b', '--batch-size', default=2, type=int,
                        help='images per gpu, the total batch size is $NGPU x batch_size')
158
    parser.add_argument('--epochs', default=26, type=int, metavar='N',
159
160
                        help='number of total epochs to run')
    parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
161
                        help='number of data loading workers (default: 4)')
162
163
164
    parser.add_argument('--lr', default=0.02, type=float,
                        help='initial learning rate, 0.02 is the default value for training '
                        'on 8 gpus and 2 images_per_gpu')
165
166
167
168
169
170
    parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                        help='momentum')
    parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
                        metavar='W', help='weight decay (default: 1e-4)',
                        dest='weight_decay')
    parser.add_argument('--lr-step-size', default=8, type=int, help='decrease lr every step-size epochs')
171
    parser.add_argument('--lr-steps', default=[16, 22], nargs='+', type=int, help='decrease lr every step-size epochs')
172
173
174
175
    parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma')
    parser.add_argument('--print-freq', default=20, type=int, help='print frequency')
    parser.add_argument('--output-dir', default='.', help='path where to save')
    parser.add_argument('--resume', default='', help='resume from checkpoint')
MultiK's avatar
MultiK committed
176
    parser.add_argument('--start_epoch', default=0, type=int, help='start epoch')
177
    parser.add_argument('--aspect-ratio-group-factor', default=3, type=int)
178
179
180
181
182
183
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )
184
185
186
187
188
189
    parser.add_argument(
        "--pretrained",
        dest="pretrained",
        help="Use pre-trained models from the modelzoo",
        action="store_true",
    )
190
191
192
193
194
195
196
197
198
199
200
201

    # distributed training parameters
    parser.add_argument('--world-size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')

    args = parser.parse_args()

    if args.output_dir:
        utils.mkdir(args.output_dir)

    main(args)