transforms_v2_dispatcher_infos.py 13 KB
Newer Older
1
import collections.abc
2
3

import pytest
4
import torchvision.transforms.v2.functional as F
5
from common_utils import InfoBase, TestMark
6
from torchvision import datapoints
7
from transforms_v2_kernel_infos import KERNEL_INFOS, pad_xfail_jit_fill_condition
8
9
10
11

__all__ = ["DispatcherInfo", "DISPATCHER_INFOS"]


12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class PILKernelInfo(InfoBase):
    def __init__(
        self,
        kernel,
        *,
        # Defaults to `kernel.__name__`. Should be set if the function is exposed under a different name
        # TODO: This can probably be removed after roll-out since we shouldn't have any aliasing then
        kernel_name=None,
    ):
        super().__init__(id=kernel_name or kernel.__name__)
        self.kernel = kernel


class DispatcherInfo(InfoBase):
    _KERNEL_INFO_MAP = {info.kernel: info for info in KERNEL_INFOS}

    def __init__(
        self,
        dispatcher,
        *,
        # Dictionary of types that map to the kernel the dispatcher dispatches to.
        kernels,
        # If omitted, no PIL dispatch test will be performed.
        pil_kernel_info=None,
        # See InfoBase
        test_marks=None,
        # See InfoBase
        closeness_kwargs=None,
    ):
        super().__init__(id=dispatcher.__name__, test_marks=test_marks, closeness_kwargs=closeness_kwargs)
        self.dispatcher = dispatcher
        self.kernels = kernels
        self.pil_kernel_info = pil_kernel_info

        kernel_infos = {}
47
        for datapoint_type, kernel in self.kernels.items():
48
49
50
            kernel_info = self._KERNEL_INFO_MAP.get(kernel)
            if not kernel_info:
                raise pytest.UsageError(
51
                    f"Can't register {kernel.__name__} for type {datapoint_type} since there is no `KernelInfo` for it. "
52
                    f"Please add a `KernelInfo` for it in `transforms_v2_kernel_infos.py`."
53
                )
54
            kernel_infos[datapoint_type] = kernel_info
55
        self.kernel_infos = kernel_infos
56

57
58
59
    def sample_inputs(self, *datapoint_types, filter_metadata=True):
        for datapoint_type in datapoint_types or self.kernel_infos.keys():
            kernel_info = self.kernel_infos.get(datapoint_type)
60
61
62
63
            if not kernel_info:
                raise pytest.UsageError(f"There is no kernel registered for type {type.__name__}")

            sample_inputs = kernel_info.sample_inputs_fn()
64
65
66

            if not filter_metadata:
                yield from sample_inputs
67
                return
68

69
70
71
            import itertools

            for args_kwargs in sample_inputs:
72
73
74
75
76
77
78
79
80
                if hasattr(datapoint_type, "__annotations__"):
                    for name in itertools.chain(
                        datapoint_type.__annotations__.keys(),
                        # FIXME: this seems ok for conversion dispatchers, but we should probably handle this on a
                        #  per-dispatcher level. However, so far there is no option for that.
                        (f"old_{name}" for name in datapoint_type.__annotations__.keys()),
                    ):
                        if name in args_kwargs.kwargs:
                            del args_kwargs.kwargs[name]
81
82

                yield args_kwargs
83

84

85
def xfail_jit(reason, *, condition=None):
86
87
88
    return TestMark(
        ("TestDispatchers", "test_scripted_smoke"),
        pytest.mark.xfail(reason=reason),
89
        condition=condition,
90
91
    )

92

93
94
95
96
97
def xfail_jit_python_scalar_arg(name, *, reason=None):
    return xfail_jit(
        reason or f"Python scalar int or float for `{name}` is not supported when scripting",
        condition=lambda args_kwargs: isinstance(args_kwargs.kwargs.get(name), (int, float)),
    )
98
99


100
101
102
skip_dispatch_datapoint = TestMark(
    ("TestDispatchers", "test_dispatch_datapoint"),
    pytest.mark.skip(reason="Dispatcher doesn't support arbitrary datapoint dispatch."),
103
104
)

105
106
107
108
109
110
111
112
113
multi_crop_skips = [
    TestMark(
        ("TestDispatchers", test_name),
        pytest.mark.skip(reason="Multi-crop dispatchers return a sequence of items rather than a single one."),
    )
    for test_name in ["test_simple_tensor_output_type", "test_pil_output_type", "test_datapoint_output_type"]
]
multi_crop_skips.append(skip_dispatch_datapoint)

114

115
116
117
118
119
120
121
def xfails_pil(reason, *, condition=None):
    return [
        TestMark(("TestDispatchers", test_name), pytest.mark.xfail(reason=reason), condition=condition)
        for test_name in ["test_dispatch_pil", "test_pil_output_type"]
    ]


122
def fill_sequence_needs_broadcast(args_kwargs):
123
124
125
126
127
128
129
130
131
132
133
134
    (image_loader, *_), kwargs = args_kwargs
    try:
        fill = kwargs["fill"]
    except KeyError:
        return False

    if not isinstance(fill, collections.abc.Sequence) or len(fill) > 1:
        return False

    return image_loader.num_channels > 1


135
136
xfails_pil_if_fill_sequence_needs_broadcast = xfails_pil(
    "PIL kernel doesn't support sequences of length 1 for `fill` if the number of color channels is larger.",
137
138
139
140
    condition=fill_sequence_needs_broadcast,
)


141
142
143
144
DISPATCHER_INFOS = [
    DispatcherInfo(
        F.crop,
        kernels={
145
146
            datapoints.Image: F.crop_image_tensor,
            datapoints.Video: F.crop_video,
147
            datapoints.BoundingBoxes: F.crop_bounding_boxes,
148
            datapoints.Mask: F.crop_mask,
149
        },
150
        pil_kernel_info=PILKernelInfo(F.crop_image_pil, kernel_name="crop_image_pil"),
151
152
153
154
    ),
    DispatcherInfo(
        F.resized_crop,
        kernels={
155
156
            datapoints.Image: F.resized_crop_image_tensor,
            datapoints.Video: F.resized_crop_video,
157
            datapoints.BoundingBoxes: F.resized_crop_bounding_boxes,
158
            datapoints.Mask: F.resized_crop_mask,
159
        },
160
        pil_kernel_info=PILKernelInfo(F.resized_crop_image_pil),
161
162
163
164
    ),
    DispatcherInfo(
        F.pad,
        kernels={
165
166
            datapoints.Image: F.pad_image_tensor,
            datapoints.Video: F.pad_video,
167
            datapoints.BoundingBoxes: F.pad_bounding_boxes,
168
            datapoints.Mask: F.pad_mask,
169
        },
170
        pil_kernel_info=PILKernelInfo(F.pad_image_pil, kernel_name="pad_image_pil"),
171
        test_marks=[
172
173
174
175
            *xfails_pil(
                reason=(
                    "PIL kernel doesn't support sequences of length 1 for argument `fill` and "
                    "`padding_mode='constant'`, if the number of color channels is larger."
176
177
178
                ),
                condition=lambda args_kwargs: fill_sequence_needs_broadcast(args_kwargs)
                and args_kwargs.kwargs.get("padding_mode", "constant") == "constant",
179
            ),
180
181
            xfail_jit("F.pad only supports vector fills for list of floats", condition=pad_xfail_jit_fill_condition),
            xfail_jit_python_scalar_arg("padding"),
182
        ],
183
    ),
184
185
186
    DispatcherInfo(
        F.perspective,
        kernels={
187
188
            datapoints.Image: F.perspective_image_tensor,
            datapoints.Video: F.perspective_video,
189
            datapoints.BoundingBoxes: F.perspective_bounding_boxes,
190
            datapoints.Mask: F.perspective_mask,
191
        },
192
        pil_kernel_info=PILKernelInfo(F.perspective_image_pil),
193
        test_marks=[
194
195
            *xfails_pil_if_fill_sequence_needs_broadcast,
            xfail_jit_python_scalar_arg("fill"),
196
        ],
197
    ),
198
199
200
    DispatcherInfo(
        F.elastic,
        kernels={
201
202
            datapoints.Image: F.elastic_image_tensor,
            datapoints.Video: F.elastic_video,
203
            datapoints.BoundingBoxes: F.elastic_bounding_boxes,
204
            datapoints.Mask: F.elastic_mask,
205
        },
206
        pil_kernel_info=PILKernelInfo(F.elastic_image_pil),
207
        test_marks=[xfail_jit_python_scalar_arg("fill")],
208
    ),
209
210
211
    DispatcherInfo(
        F.center_crop,
        kernels={
212
213
            datapoints.Image: F.center_crop_image_tensor,
            datapoints.Video: F.center_crop_video,
214
            datapoints.BoundingBoxes: F.center_crop_bounding_boxes,
215
            datapoints.Mask: F.center_crop_mask,
216
        },
217
        pil_kernel_info=PILKernelInfo(F.center_crop_image_pil),
218
        test_marks=[
219
            xfail_jit_python_scalar_arg("output_size"),
220
        ],
221
222
223
224
    ),
    DispatcherInfo(
        F.gaussian_blur,
        kernels={
225
226
            datapoints.Image: F.gaussian_blur_image_tensor,
            datapoints.Video: F.gaussian_blur_video,
227
        },
228
        pil_kernel_info=PILKernelInfo(F.gaussian_blur_image_pil),
229
        test_marks=[
230
231
            xfail_jit_python_scalar_arg("kernel_size"),
            xfail_jit_python_scalar_arg("sigma"),
232
        ],
233
234
235
236
    ),
    DispatcherInfo(
        F.equalize,
        kernels={
237
238
            datapoints.Image: F.equalize_image_tensor,
            datapoints.Video: F.equalize_video,
239
        },
240
        pil_kernel_info=PILKernelInfo(F.equalize_image_pil, kernel_name="equalize_image_pil"),
241
242
243
244
    ),
    DispatcherInfo(
        F.invert,
        kernels={
245
246
            datapoints.Image: F.invert_image_tensor,
            datapoints.Video: F.invert_video,
247
        },
248
        pil_kernel_info=PILKernelInfo(F.invert_image_pil, kernel_name="invert_image_pil"),
249
250
251
252
    ),
    DispatcherInfo(
        F.posterize,
        kernels={
253
254
            datapoints.Image: F.posterize_image_tensor,
            datapoints.Video: F.posterize_video,
255
        },
256
        pil_kernel_info=PILKernelInfo(F.posterize_image_pil, kernel_name="posterize_image_pil"),
257
258
259
260
    ),
    DispatcherInfo(
        F.solarize,
        kernels={
261
262
            datapoints.Image: F.solarize_image_tensor,
            datapoints.Video: F.solarize_video,
263
        },
264
        pil_kernel_info=PILKernelInfo(F.solarize_image_pil, kernel_name="solarize_image_pil"),
265
266
267
268
    ),
    DispatcherInfo(
        F.autocontrast,
        kernels={
269
270
            datapoints.Image: F.autocontrast_image_tensor,
            datapoints.Video: F.autocontrast_video,
271
        },
272
        pil_kernel_info=PILKernelInfo(F.autocontrast_image_pil, kernel_name="autocontrast_image_pil"),
273
274
275
276
    ),
    DispatcherInfo(
        F.adjust_sharpness,
        kernels={
277
278
            datapoints.Image: F.adjust_sharpness_image_tensor,
            datapoints.Video: F.adjust_sharpness_video,
279
        },
280
        pil_kernel_info=PILKernelInfo(F.adjust_sharpness_image_pil, kernel_name="adjust_sharpness_image_pil"),
281
282
283
284
    ),
    DispatcherInfo(
        F.erase,
        kernels={
285
286
            datapoints.Image: F.erase_image_tensor,
            datapoints.Video: F.erase_video,
287
        },
288
        pil_kernel_info=PILKernelInfo(F.erase_image_pil),
289
        test_marks=[
290
            skip_dispatch_datapoint,
291
        ],
292
    ),
293
294
295
    DispatcherInfo(
        F.adjust_contrast,
        kernels={
296
297
            datapoints.Image: F.adjust_contrast_image_tensor,
            datapoints.Video: F.adjust_contrast_video,
298
        },
299
        pil_kernel_info=PILKernelInfo(F.adjust_contrast_image_pil, kernel_name="adjust_contrast_image_pil"),
300
301
302
303
    ),
    DispatcherInfo(
        F.adjust_gamma,
        kernels={
304
305
            datapoints.Image: F.adjust_gamma_image_tensor,
            datapoints.Video: F.adjust_gamma_video,
306
        },
307
        pil_kernel_info=PILKernelInfo(F.adjust_gamma_image_pil, kernel_name="adjust_gamma_image_pil"),
308
309
310
311
    ),
    DispatcherInfo(
        F.adjust_hue,
        kernels={
312
313
            datapoints.Image: F.adjust_hue_image_tensor,
            datapoints.Video: F.adjust_hue_video,
314
        },
315
        pil_kernel_info=PILKernelInfo(F.adjust_hue_image_pil, kernel_name="adjust_hue_image_pil"),
316
317
318
319
    ),
    DispatcherInfo(
        F.adjust_saturation,
        kernels={
320
321
            datapoints.Image: F.adjust_saturation_image_tensor,
            datapoints.Video: F.adjust_saturation_video,
322
        },
323
        pil_kernel_info=PILKernelInfo(F.adjust_saturation_image_pil, kernel_name="adjust_saturation_image_pil"),
324
325
326
327
    ),
    DispatcherInfo(
        F.five_crop,
        kernels={
328
329
            datapoints.Image: F.five_crop_image_tensor,
            datapoints.Video: F.five_crop_video,
330
        },
331
        pil_kernel_info=PILKernelInfo(F.five_crop_image_pil),
332
        test_marks=[
333
            xfail_jit_python_scalar_arg("size"),
334
            *multi_crop_skips,
335
336
337
338
339
        ],
    ),
    DispatcherInfo(
        F.ten_crop,
        kernels={
340
341
            datapoints.Image: F.ten_crop_image_tensor,
            datapoints.Video: F.ten_crop_video,
342
        },
343
        test_marks=[
344
            xfail_jit_python_scalar_arg("size"),
345
            *multi_crop_skips,
346
        ],
347
        pil_kernel_info=PILKernelInfo(F.ten_crop_image_pil),
348
349
350
351
    ),
    DispatcherInfo(
        F.normalize,
        kernels={
352
353
            datapoints.Image: F.normalize_image_tensor,
            datapoints.Video: F.normalize_video,
354
        },
355
        test_marks=[
356
357
            xfail_jit_python_scalar_arg("mean"),
            xfail_jit_python_scalar_arg("std"),
358
        ],
359
    ),
360
361
362
    DispatcherInfo(
        F.uniform_temporal_subsample,
        kernels={
363
            datapoints.Video: F.uniform_temporal_subsample_video,
364
365
        },
        test_marks=[
366
            skip_dispatch_datapoint,
367
368
        ],
    ),
369
    DispatcherInfo(
370
371
        F.clamp_bounding_boxes,
        kernels={datapoints.BoundingBoxes: F.clamp_bounding_boxes},
372
373
374
375
376
        test_marks=[
            skip_dispatch_datapoint,
        ],
    ),
    DispatcherInfo(
377
378
        F.convert_format_bounding_boxes,
        kernels={datapoints.BoundingBoxes: F.convert_format_bounding_boxes},
379
380
381
382
        test_marks=[
            skip_dispatch_datapoint,
        ],
    ),
383
]