_meta.py 1.58 KB
Newer Older
1
from typing import Any, Dict, Union
Philip Meier's avatar
Philip Meier committed
2

3
from torchvision import tv_tensors
4
from torchvision.transforms.v2 import functional as F, Transform
5
6
7


class ConvertBoundingBoxFormat(Transform):
Nicolas Hug's avatar
Nicolas Hug committed
8
    """[BETA] Convert bounding box coordinates to the given ``format``, eg from "CXCYWH" to "XYXY".
vfdev's avatar
vfdev committed
9

10
    .. v2betastatus:: ConvertBoundingBoxFormat transform
vfdev's avatar
vfdev committed
11
12

    Args:
13
14
        format (str or tv_tensors.BoundingBoxFormat): output bounding box format.
            Possible values are defined by :class:`~torchvision.tv_tensors.BoundingBoxFormat` and
vfdev's avatar
vfdev committed
15
16
            string values match the enums, e.g. "XYXY" or "XYWH" etc.
    """
Nicolas Hug's avatar
Nicolas Hug committed
17

18
    _transformed_types = (tv_tensors.BoundingBoxes,)
19

20
    def __init__(self, format: Union[str, tv_tensors.BoundingBoxFormat]) -> None:
21
22
        super().__init__()
        if isinstance(format, str):
23
            format = tv_tensors.BoundingBoxFormat[format]
24
25
        self.format = format

26
    def _transform(self, inpt: tv_tensors.BoundingBoxes, params: Dict[str, Any]) -> tv_tensors.BoundingBoxes:
Nicolas Hug's avatar
Nicolas Hug committed
27
        return F.convert_bounding_box_format(inpt, new_format=self.format)  # type: ignore[return-value]
28
29


30
class ClampBoundingBoxes(Transform):
vfdev's avatar
vfdev committed
31
32
    """[BETA] Clamp bounding boxes to their corresponding image dimensions.

Philip Meier's avatar
Philip Meier committed
33
    The clamping is done according to the bounding boxes' ``canvas_size`` meta-data.
vfdev's avatar
vfdev committed
34

35
    .. v2betastatus:: ClampBoundingBoxes transform
vfdev's avatar
vfdev committed
36
37

    """
Nicolas Hug's avatar
Nicolas Hug committed
38

39
    _transformed_types = (tv_tensors.BoundingBoxes,)
40

41
    def _transform(self, inpt: tv_tensors.BoundingBoxes, params: Dict[str, Any]) -> tv_tensors.BoundingBoxes:
42
        return F.clamp_bounding_boxes(inpt)  # type: ignore[return-value]