roi_align_kernel.cu 13.5 KB
Newer Older
1
#include <ATen/ATen.h>
2
3
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
4
#include <torch/library.h>
5
#include <ATen/native/cuda/KernelUtils.cuh>
6
7

#include "cuda_helpers.h"
8
9
10
11
12

namespace vision {
namespace ops {

namespace {
13
14
15
16

template <typename T>
__device__ T bilinear_interpolate(
    const T* input,
17
18
    int height,
    int width,
19
20
    T y,
    T x,
21
    int index /* index for debug only*/) {
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    return 0;
  }

  if (y <= 0)
    y = 0;
  if (x <= 0)
    x = 0;

  int y_low = (int)y;
  int x_low = (int)x;
  int y_high;
  int x_high;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // do bilinear interpolation
  T v1 = input[y_low * width + x_low];
  T v2 = input[y_low * width + x_high];
  T v3 = input[y_high * width + x_low];
  T v4 = input[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  return val;
}

template <typename T>
69
__global__ void roi_align_forward_kernel_impl(
70
    int nthreads,
71
72
    const T* input,
    const T spatial_scale,
73
74
75
76
77
78
79
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int sampling_ratio,
    bool aligned,
80
81
82
83
84
85
86
87
88
89
90
91
92
    const T* rois,
    T* output) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];

    // Do not using rounding; this implementation detail is critical
AhnDW's avatar
AhnDW committed
93
94
95
96
97
    T offset = aligned ? (T)0.5 : (T)0.0;
    T roi_start_w = offset_rois[1] * spatial_scale - offset;
    T roi_start_h = offset_rois[2] * spatial_scale - offset;
    T roi_end_w = offset_rois[3] * spatial_scale - offset;
    T roi_end_h = offset_rois[4] * spatial_scale - offset;
98

99
100
101
102
103
104
105
    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    if (!aligned) {
      // Force malformed ROIs to be 1x1
      roi_width = max(roi_width, (T)1.);
      roi_height = max(roi_height, (T)1.);
    }
AhnDW's avatar
AhnDW committed
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    const T* offset_input =
        input + (roi_batch_ind * channels + c) * height * width;

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
AhnDW's avatar
AhnDW committed
121
122
    // When the grid is empty, output zeros.
    const T count = max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

    T output_val = 0.;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
    {
      const T y = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T val = bilinear_interpolate(offset_input, height, width, y, x, index);
        output_val += val;
      }
    }
    output_val /= count;

    output[index] = output_val;
  }
}

template <typename T>
__device__ void bilinear_interpolate_gradient(
147
148
    int height,
    int width,
149
150
151
152
153
154
155
156
157
158
    T y,
    T x,
    T& w1,
    T& w2,
    T& w3,
    T& w4,
    int& x_low,
    int& x_high,
    int& y_low,
    int& y_high,
159
    int index /* index for debug only*/) {
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    w1 = w2 = w3 = w4 = 0.;
    x_low = x_high = y_low = y_high = -1;
    return;
  }

  if (y <= 0)
    y = 0;
  if (x <= 0)
    x = 0;

  y_low = (int)y;
  x_low = (int)x;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;

  // reference in forward
  // T v1 = input[y_low * width + x_low];
  // T v2 = input[y_low * width + x_high];
  // T v3 = input[y_high * width + x_low];
  // T v4 = input[y_high * width + x_high];
  // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
}

template <typename T>
205
__global__ void roi_align_backward_kernel_impl(
206
    int nthreads,
207
208
    const T* grad_output,
    const T spatial_scale,
209
210
211
212
213
214
215
    int channels,
    int height,
    int width,
    int pooled_height,
    int pooled_width,
    int sampling_ratio,
    bool aligned,
216
217
    T* grad_input,
    const T* rois,
218
219
220
    int n_stride,
    int c_stride,
    int h_stride,
221
222
    int w_stride,
    const int memory_span) {
223
224
225
226
227
228
229
230
231
232
233
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    const T* offset_rois = rois + n * 5;
    int roi_batch_ind = offset_rois[0];

    // Do not using rounding; this implementation detail is critical
AhnDW's avatar
AhnDW committed
234
235
236
237
238
    T offset = aligned ? (T)0.5 : (T)0.0;
    T roi_start_w = offset_rois[1] * spatial_scale - offset;
    T roi_start_h = offset_rois[2] * spatial_scale - offset;
    T roi_end_w = offset_rois[3] * spatial_scale - offset;
    T roi_end_h = offset_rois[4] * spatial_scale - offset;
239

240
241
242
243
244
245
246
    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    if (!aligned) {
      // Force malformed ROIs to be 1x1
      roi_width = max(roi_width, (T)1.);
      roi_height = max(roi_height, (T)1.);
    }
AhnDW's avatar
AhnDW committed
247

248
249
250
251
252
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    // We need to index the gradient using the tensor strides to access the
    // correct values.
253
    const int output_offset = n * n_stride + c * c_stride;
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    const T* offset_grad_output = grad_output + output_offset;
    const T grad_output_this_bin =
        offset_grad_output[ph * h_stride + pw * w_stride];

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4

268
269
    const int input_offset = (roi_batch_ind * channels + c) * height * width;

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
    {
      const T y = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T w1, w2, w3, w4;
        int x_low, x_high, y_low, y_high;

        bilinear_interpolate_gradient(
            height,
            width,
            y,
            x,
            w1,
            w2,
            w3,
            w4,
            x_low,
            x_high,
            y_low,
            y_high,
            index);

        T g1 = grad_output_this_bin * w1 / count;
        T g2 = grad_output_this_bin * w2 / count;
        T g3 = grad_output_this_bin * w3 / count;
        T g4 = grad_output_this_bin * w4 / count;

        if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
          at::native::fastAtomicAdd(
              grad_input,
              input_offset + y_low * width + x_low,
              memory_span,
              static_cast<T>(g1),
              true);
          at::native::fastAtomicAdd(
              grad_input,
              input_offset + y_low * width + x_high,
              memory_span,
              static_cast<T>(g2),
              true);
          at::native::fastAtomicAdd(
              grad_input,
              input_offset + y_high * width + x_low,
              memory_span,
              static_cast<T>(g3),
              true);
          at::native::fastAtomicAdd(
              grad_input,
              input_offset + y_high * width + x_high,
              memory_span,
              static_cast<T>(g4),
              true);
328
329
330
331
        } // if
      } // ix
    } // iy
  } // CUDA_1D_KERNEL_LOOP
332
}
333

334
at::Tensor roi_align_forward_kernel(
335
336
    const at::Tensor& input,
    const at::Tensor& rois,
337
338
339
340
341
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t sampling_ratio,
    bool aligned) {
vfdev's avatar
vfdev committed
342
343
  TORCH_CHECK(input.is_cuda(), "input must be a CUDA tensor");
  TORCH_CHECK(rois.is_cuda(), "rois must be a CUDA tensor");
344
  TORCH_CHECK(rois.size(1) == 5, "rois must have shape as Tensor[K, 5]");
345
346
347

  at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2};

348
  at::CheckedFrom c = "roi_align_forward_kernel";
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
  at::checkAllSameGPU(c, {input_t, rois_t});
  at::checkAllSameType(c, {input_t, rois_t});

  at::cuda::CUDAGuard device_guard(input.device());

  auto num_rois = rois.size(0);
  auto channels = input.size(1);
  auto height = input.size(2);
  auto width = input.size(3);

  at::Tensor output = at::zeros(
      {num_rois, channels, pooled_height, pooled_width}, input.options());

  auto output_size = num_rois * pooled_height * pooled_width * channels;
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

Francisco Massa's avatar
Francisco Massa committed
365
  dim3 grid(std::min(
366
      ceil_div(static_cast<int64_t>(output_size), static_cast<int64_t>(512)),
Francisco Massa's avatar
Francisco Massa committed
367
      static_cast<int64_t>(4096)));
368
369
370
371
372
373
374
  dim3 block(512);

  if (output.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return output;
  }

375
376
  auto input_ = input.contiguous(), rois_ = rois.contiguous();
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
377
      input.scalar_type(), "roi_align_forward_kernel", [&] {
378
379
380
381
382
383
384
385
386
387
388
389
390
391
        roi_align_forward_kernel_impl<scalar_t><<<grid, block, 0, stream>>>(
            output_size,
            input_.data_ptr<scalar_t>(),
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            sampling_ratio,
            aligned,
            rois_.data_ptr<scalar_t>(),
            output.data_ptr<scalar_t>());
      });
392
393
394
395
  AT_CUDA_CHECK(cudaGetLastError());
  return output;
}

396
at::Tensor roi_align_backward_kernel(
397
398
    const at::Tensor& grad,
    const at::Tensor& rois,
399
400
401
402
403
404
405
406
407
    double spatial_scale,
    int64_t pooled_height,
    int64_t pooled_width,
    int64_t batch_size,
    int64_t channels,
    int64_t height,
    int64_t width,
    int64_t sampling_ratio,
    bool aligned) {
vfdev's avatar
vfdev committed
408
409
  TORCH_CHECK(grad.is_cuda(), "grad must be a CUDA tensor");
  TORCH_CHECK(rois.is_cuda(), "rois must be a CUDA tensor");
410
411
412

  at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2};

413
  at::CheckedFrom c = "roi_align_backward_kernel";
414
415
416
417
418
419
420
421
422
423
  at::checkAllSameGPU(c, {grad_t, rois_t});
  at::checkAllSameType(c, {grad_t, rois_t});

  at::cuda::CUDAGuard device_guard(grad.device());

  at::Tensor grad_input =
      at::zeros({batch_size, channels, height, width}, grad.options());

  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

Francisco Massa's avatar
Francisco Massa committed
424
  dim3 grid(std::min(
425
      ceil_div(static_cast<int64_t>(grad.numel()), static_cast<int64_t>(512)),
Francisco Massa's avatar
Francisco Massa committed
426
      static_cast<int64_t>(4096)));
427
428
429
430
431
432
433
434
435
436
437
438
439
  dim3 block(512);

  // handle possibly empty gradients
  if (grad.numel() == 0) {
    AT_CUDA_CHECK(cudaGetLastError());
    return grad_input;
  }

  int n_stride = grad.stride(0);
  int c_stride = grad.stride(1);
  int h_stride = grad.stride(2);
  int w_stride = grad.stride(3);

440
441
  at::globalContext().alertNotDeterministic("roi_align_backward_kernel");

442
  auto rois_ = rois.contiguous();
443
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
444
      grad.scalar_type(), "roi_align_backward_kernel", [&] {
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
        roi_align_backward_kernel_impl<scalar_t><<<grid, block, 0, stream>>>(
            grad.numel(),
            grad.data_ptr<scalar_t>(),
            spatial_scale,
            channels,
            height,
            width,
            pooled_height,
            pooled_width,
            sampling_ratio,
            aligned,
            grad_input.data_ptr<scalar_t>(),
            rois_.data_ptr<scalar_t>(),
            n_stride,
            c_stride,
            h_stride,
461
462
            w_stride,
            grad_input.numel());
463
      });
464
465
466
  AT_CUDA_CHECK(cudaGetLastError());
  return grad_input;
}
467

468
469
470
} // namespace

TORCH_LIBRARY_IMPL(torchvision, CUDA, m) {
471
472
473
474
475
476
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::roi_align"),
      TORCH_FN(roi_align_forward_kernel));
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::_roi_align_backward"),
      TORCH_FN(roi_align_backward_kernel));
477
478
}

479
480
} // namespace ops
} // namespace vision