roi_align_kernel.cpp 4.56 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#include "../roi_align.h"

#include <torch/autograd.h>
#include <torch/types.h>

namespace vision {
namespace ops {

namespace {

class ROIAlignFunction : public torch::autograd::Function<ROIAlignFunction> {
 public:
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::Variable& input,
      const torch::autograd::Variable& rois,
      double spatial_scale,
Edward Z. Yang's avatar
Edward Z. Yang committed
18
19
      c10::SymInt pooled_height,
      c10::SymInt pooled_width,
20
21
22
23
24
25
26
      int64_t sampling_ratio,
      bool aligned) {
    ctx->saved_data["spatial_scale"] = spatial_scale;
    ctx->saved_data["pooled_height"] = pooled_height;
    ctx->saved_data["pooled_width"] = pooled_width;
    ctx->saved_data["sampling_ratio"] = sampling_ratio;
    ctx->saved_data["aligned"] = aligned;
Edward Z. Yang's avatar
Edward Z. Yang committed
27
    ctx->saved_data["input_shape"] = input.sym_sizes();
28
    ctx->save_for_backward({rois});
29
    at::AutoDispatchBelowADInplaceOrView g;
Edward Z. Yang's avatar
Edward Z. Yang committed
30
    auto result = roi_align_symint(
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
        input,
        rois,
        spatial_scale,
        pooled_height,
        pooled_width,
        sampling_ratio,
        aligned);
    return {result};
  }

  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::variable_list& grad_output) {
    // Use data saved in forward
    auto saved = ctx->get_saved_variables();
    auto rois = saved[0];
Edward Z. Yang's avatar
Edward Z. Yang committed
47
48
    auto input_shape = ctx->saved_data["input_shape"].toList();
    auto grad_in = detail::_roi_align_backward_symint(
49
50
51
        grad_output[0],
        rois,
        ctx->saved_data["spatial_scale"].toDouble(),
Edward Z. Yang's avatar
Edward Z. Yang committed
52
53
54
55
56
57
        ctx->saved_data["pooled_height"].toSymInt(),
        ctx->saved_data["pooled_width"].toSymInt(),
        input_shape[0].get().toSymInt(),
        input_shape[1].get().toSymInt(),
        input_shape[2].get().toSymInt(),
        input_shape[3].get().toSymInt(),
58
59
        ctx->saved_data["sampling_ratio"].toInt(),
        ctx->saved_data["aligned"].toBool());
60
61
62
63
64
65
66
67
    return {
        grad_in,
        torch::autograd::Variable(),
        torch::autograd::Variable(),
        torch::autograd::Variable(),
        torch::autograd::Variable(),
        torch::autograd::Variable(),
        torch::autograd::Variable()};
68
69
70
71
72
73
74
75
76
77
78
79
  }
};

// TODO: There should be an easier way to do this
class ROIAlignBackwardFunction
    : public torch::autograd::Function<ROIAlignBackwardFunction> {
 public:
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::Variable& grad,
      const torch::autograd::Variable& rois,
      double spatial_scale,
Edward Z. Yang's avatar
Edward Z. Yang committed
80
81
82
83
84
85
      c10::SymInt pooled_height,
      c10::SymInt pooled_width,
      c10::SymInt batch_size,
      c10::SymInt channels,
      c10::SymInt height,
      c10::SymInt width,
86
87
      int64_t sampling_ratio,
      bool aligned) {
88
    at::AutoDispatchBelowADInplaceOrView g;
Edward Z. Yang's avatar
Edward Z. Yang committed
89
    auto result = detail::_roi_align_backward_symint(
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        grad,
        rois,
        spatial_scale,
        pooled_height,
        pooled_width,
        batch_size,
        channels,
        height,
        width,
        sampling_ratio,
        aligned);
    return {result};
  }

  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::variable_list& grad_output) {
    TORCH_CHECK(0, "double backwards on roi_align not supported");
  }
};

at::Tensor roi_align_autograd(
    const at::Tensor& input,
    const at::Tensor& rois,
    double spatial_scale,
Edward Z. Yang's avatar
Edward Z. Yang committed
115
116
    c10::SymInt pooled_height,
    c10::SymInt pooled_width,
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    int64_t sampling_ratio,
    bool aligned) {
  return ROIAlignFunction::apply(
      input,
      rois,
      spatial_scale,
      pooled_height,
      pooled_width,
      sampling_ratio,
      aligned)[0];
}

at::Tensor roi_align_backward_autograd(
    const at::Tensor& grad,
    const at::Tensor& rois,
    double spatial_scale,
Edward Z. Yang's avatar
Edward Z. Yang committed
133
134
135
136
137
138
    c10::SymInt pooled_height,
    c10::SymInt pooled_width,
    c10::SymInt batch_size,
    c10::SymInt channels,
    c10::SymInt height,
    c10::SymInt width,
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    int64_t sampling_ratio,
    bool aligned) {
  return ROIAlignBackwardFunction::apply(
      grad,
      rois,
      spatial_scale,
      pooled_height,
      pooled_width,
      batch_size,
      channels,
      height,
      width,
      sampling_ratio,
      aligned)[0];
}

} // namespace

TORCH_LIBRARY_IMPL(torchvision, Autograd, m) {
158
159
160
161
162
163
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::roi_align"),
      TORCH_FN(roi_align_autograd));
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::_roi_align_backward"),
      TORCH_FN(roi_align_backward_autograd));
164
165
166
167
}

} // namespace ops
} // namespace vision