transforms_v2_kernel_infos.py 65.1 KB
Newer Older
1
import decimal
2
3
4
5
import functools
import itertools

import numpy as np
6
import PIL.Image
7
8
import pytest
import torch.testing
9
import torchvision.ops
10
import torchvision.transforms.v2.functional as F
11
from common_utils import (
12
    ArgsKwargs,
13
    combinations_grid,
14
    DEFAULT_PORTRAIT_SPATIAL_SIZE,
15
16
    get_num_channels,
    ImageLoader,
17
    InfoBase,
18
    make_bounding_box_loader,
19
    make_bounding_box_loaders,
20
    make_detection_mask_loader,
21
22
    make_image_loader,
    make_image_loaders,
23
    make_image_loaders_for_interpolation,
24
    make_mask_loaders,
25
    make_video_loader,
26
    make_video_loaders,
27
28
    mark_framework_limitation,
    TestMark,
29
)
30
from torch.utils._pytree import tree_map
31
from torchvision import datapoints
32
from torchvision.transforms._functional_tensor import _max_value as get_max_value, _parse_pad_padding
33
34
35
36

__all__ = ["KernelInfo", "KERNEL_INFOS"]


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
class KernelInfo(InfoBase):
    def __init__(
        self,
        kernel,
        *,
        # Defaults to `kernel.__name__`. Should be set if the function is exposed under a different name
        # TODO: This can probably be removed after roll-out since we shouldn't have any aliasing then
        kernel_name=None,
        # Most common tests use these inputs to check the kernel. As such it should cover all valid code paths, but
        # should not include extensive parameter combinations to keep to overall test count moderate.
        sample_inputs_fn,
        # This function should mirror the kernel. It should have the same signature as the `kernel` and as such also
        # take tensors as inputs. Any conversion into another object type, e.g. PIL images or numpy arrays, should
        # happen inside the function. It should return a tensor or to be more precise an object that can be compared to
        # a tensor by `assert_close`. If omitted, no reference test will be performed.
        reference_fn=None,
        # These inputs are only used for the reference tests and thus can be comprehensive with regard to the parameter
        # values to be tested. If not specified, `sample_inputs_fn` will be used.
        reference_inputs_fn=None,
56
        # If true-ish, triggers a test that checks the kernel for consistency between uint8 and float32 inputs with the
57
        # reference inputs. This is usually used whenever we use a PIL kernel as reference.
58
59
60
61
        # Can be a callable in which case it will be called with `other_args, kwargs`. It should return the same
        # structure, but with adapted parameters. This is useful in case a parameter value is closely tied to the input
        # dtype.
        float32_vs_uint8=False,
62
63
64
        # Some kernels don't have dispatchers that would handle logging the usage. Thus, the kernel has to do it
        # manually. If set, triggers a test that makes sure this happens.
        logs_usage=False,
65
66
67
68
69
70
71
72
73
74
        # See InfoBase
        test_marks=None,
        # See InfoBase
        closeness_kwargs=None,
    ):
        super().__init__(id=kernel_name or kernel.__name__, test_marks=test_marks, closeness_kwargs=closeness_kwargs)
        self.kernel = kernel
        self.sample_inputs_fn = sample_inputs_fn
        self.reference_fn = reference_fn
        self.reference_inputs_fn = reference_inputs_fn
75

76
77
78
        if float32_vs_uint8 and not callable(float32_vs_uint8):
            float32_vs_uint8 = lambda other_args, kwargs: (other_args, kwargs)  # noqa: E731
        self.float32_vs_uint8 = float32_vs_uint8
79
        self.logs_usage = logs_usage
80
81


82
def pixel_difference_closeness_kwargs(uint8_atol, *, dtype=torch.uint8, mae=False):
83
    return dict(atol=uint8_atol / 255 * get_max_value(dtype), rtol=0, mae=mae)
84
85
86
87


def cuda_vs_cpu_pixel_difference(atol=1):
    return {
88
        (("TestKernels", "test_cuda_vs_cpu"), dtype, "cuda"): pixel_difference_closeness_kwargs(atol, dtype=dtype)
89
90
91
92
        for dtype in [torch.uint8, torch.float32]
    }


93
def pil_reference_pixel_difference(atol=1, mae=False):
94
    return {
95
        (("TestKernels", "test_against_reference"), torch.uint8, "cpu"): pixel_difference_closeness_kwargs(
96
            atol, mae=mae
97
98
99
100
        )
    }


101
def float32_vs_uint8_pixel_difference(atol=1, mae=False):
102
103
104
105
106
    return {
        (
            ("TestKernels", "test_float32_vs_uint8"),
            torch.float32,
            "cpu",
107
        ): pixel_difference_closeness_kwargs(atol, dtype=torch.float32, mae=mae)
108
    }
109

110

111
def scripted_vs_eager_float64_tolerances(device, atol=1e-6, rtol=1e-6):
112
113
114
115
116
    return {
        (("TestKernels", "test_scripted_vs_eager"), torch.float64, device): {"atol": atol, "rtol": rtol, "mae": False},
    }


117
118
def pil_reference_wrapper(pil_kernel):
    @functools.wraps(pil_kernel)
119
120
121
122
    def wrapper(input_tensor, *other_args, **kwargs):
        if input_tensor.dtype != torch.uint8:
            raise pytest.UsageError(f"Can only test uint8 tensor images against PIL, but input is {input_tensor.dtype}")
        if input_tensor.ndim > 3:
123
            raise pytest.UsageError(
124
                f"Can only test single tensor images against PIL, but input has shape {input_tensor.shape}"
125
126
            )

127
128
129
130
131
132
133
134
135
136
137
138
139
140
        input_pil = F.to_image_pil(input_tensor)
        output_pil = pil_kernel(input_pil, *other_args, **kwargs)
        if not isinstance(output_pil, PIL.Image.Image):
            return output_pil

        output_tensor = F.to_image_tensor(output_pil)

        # 2D mask shenanigans
        if output_tensor.ndim == 2 and input_tensor.ndim == 3:
            output_tensor = output_tensor.unsqueeze(0)
        elif output_tensor.ndim == 3 and input_tensor.ndim == 2:
            output_tensor = output_tensor.squeeze(0)

        return output_tensor
141
142
143
144

    return wrapper


145
146
147
148
def xfail_jit(reason, *, condition=None):
    return TestMark(("TestKernels", "test_scripted_vs_eager"), pytest.mark.xfail(reason=reason), condition=condition)


149
def xfail_jit_python_scalar_arg(name, *, reason=None):
150
151
    return xfail_jit(
        reason or f"Python scalar int or float for `{name}` is not supported when scripting",
152
153
154
155
        condition=lambda args_kwargs: isinstance(args_kwargs.kwargs.get(name), (int, float)),
    )


156
157
158
KERNEL_INFOS = []


159
def get_fills(*, num_channels, dtype):
160
161
    yield None

162
163
164
165
    int_value = get_max_value(dtype)
    float_value = int_value / 2
    yield int_value
    yield float_value
166

167
168
169
    for vector_type in [list, tuple]:
        yield vector_type([int_value])
        yield vector_type([float_value])
170

171
172
173
        if num_channels > 1:
            yield vector_type(float_value * c / 10 for c in range(num_channels))
            yield vector_type(int_value if c % 2 == 0 else 0 for c in range(num_channels))
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188


def float32_vs_uint8_fill_adapter(other_args, kwargs):
    fill = kwargs.get("fill")
    if fill is None:
        return other_args, kwargs

    if isinstance(fill, (int, float)):
        fill /= 255
    else:
        fill = type(fill)(fill_ / 255 for fill_ in fill)

    return other_args, dict(kwargs, fill=fill)


189
190
def reference_affine_bounding_box_helper(bounding_box, *, format, spatial_size, affine_matrix):
    def transform(bbox, affine_matrix_, format_, spatial_size_):
191
192
        # Go to float before converting to prevent precision loss in case of CXCYWH -> XYXY and W or H is 1
        in_dtype = bbox.dtype
193
194
        if not torch.is_floating_point(bbox):
            bbox = bbox.float()
195
        bbox_xyxy = F.convert_format_bounding_box(
196
197
198
199
            bbox.as_subclass(torch.Tensor),
            old_format=format_,
            new_format=datapoints.BoundingBoxFormat.XYXY,
            inplace=True,
200
        )
201
202
203
204
205
206
207
208
        points = np.array(
            [
                [bbox_xyxy[0].item(), bbox_xyxy[1].item(), 1.0],
                [bbox_xyxy[2].item(), bbox_xyxy[1].item(), 1.0],
                [bbox_xyxy[0].item(), bbox_xyxy[3].item(), 1.0],
                [bbox_xyxy[2].item(), bbox_xyxy[3].item(), 1.0],
            ]
        )
209
        transformed_points = np.matmul(points, affine_matrix_.T)
210
211
        out_bbox = torch.tensor(
            [
212
213
214
215
                np.min(transformed_points[:, 0]).item(),
                np.min(transformed_points[:, 1]).item(),
                np.max(transformed_points[:, 0]).item(),
                np.max(transformed_points[:, 1]).item(),
216
            ],
217
            dtype=bbox_xyxy.dtype,
218
        )
219
        out_bbox = F.convert_format_bounding_box(
220
            out_bbox, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format_, inplace=True
221
        )
222
223
224
225
        # It is important to clamp before casting, especially for CXCYWH format, dtype=int64
        out_bbox = F.clamp_bounding_box(out_bbox, format=format_, spatial_size=spatial_size_)
        out_bbox = out_bbox.to(dtype=in_dtype)
        return out_bbox
226
227
228
229

    if bounding_box.ndim < 2:
        bounding_box = [bounding_box]

230
    expected_bboxes = [transform(bbox, affine_matrix, format, spatial_size) for bbox in bounding_box]
231
232
233
234
235
236
237
238
    if len(expected_bboxes) > 1:
        expected_bboxes = torch.stack(expected_bboxes)
    else:
        expected_bboxes = expected_bboxes[0]

    return expected_bboxes


239
def sample_inputs_convert_format_bounding_box():
240
    formats = list(datapoints.BoundingBoxFormat)
241
    for bounding_box_loader, new_format in itertools.product(make_bounding_box_loaders(formats=formats), formats):
242
        yield ArgsKwargs(bounding_box_loader, old_format=bounding_box_loader.format, new_format=new_format)
243
244


245
def reference_convert_format_bounding_box(bounding_box, old_format, new_format):
246
    return torchvision.ops.box_convert(
247
248
        bounding_box, in_fmt=old_format.name.lower(), out_fmt=new_format.name.lower()
    ).to(bounding_box.dtype)
249
250
251


def reference_inputs_convert_format_bounding_box():
252
    for args_kwargs in sample_inputs_convert_format_bounding_box():
253
254
        if len(args_kwargs.args[0].shape) == 2:
            yield args_kwargs
255
256
257
258
259
260
261
262


KERNEL_INFOS.append(
    KernelInfo(
        F.convert_format_bounding_box,
        sample_inputs_fn=sample_inputs_convert_format_bounding_box,
        reference_fn=reference_convert_format_bounding_box,
        reference_inputs_fn=reference_inputs_convert_format_bounding_box,
263
        logs_usage=True,
264
265
266
        closeness_kwargs={
            (("TestKernels", "test_against_reference"), torch.int64, "cpu"): dict(atol=1, rtol=0),
        },
267
268
269
270
    ),
)


271
272
273
274
_CROP_PARAMS = combinations_grid(top=[-8, 0, 9], left=[-8, 0, 9], height=[12, 20], width=[12, 20])


def sample_inputs_crop_image_tensor():
275
    for image_loader, params in itertools.product(
276
        make_image_loaders(sizes=[(16, 17)], color_spaces=["RGB"], dtypes=[torch.float32]),
277
278
279
280
281
282
283
284
        [
            dict(top=4, left=3, height=7, width=8),
            dict(top=-1, left=3, height=7, width=8),
            dict(top=4, left=-1, height=7, width=8),
            dict(top=4, left=3, height=17, width=8),
            dict(top=4, left=3, height=7, width=18),
        ],
    ):
285
286
287
288
        yield ArgsKwargs(image_loader, **params)


def reference_inputs_crop_image_tensor():
289
290
291
    for image_loader, params in itertools.product(
        make_image_loaders(extra_dims=[()], dtypes=[torch.uint8]), _CROP_PARAMS
    ):
292
293
294
295
296
297
298
        yield ArgsKwargs(image_loader, **params)


def sample_inputs_crop_bounding_box():
    for bounding_box_loader, params in itertools.product(
        make_bounding_box_loaders(), [_CROP_PARAMS[0], _CROP_PARAMS[-1]]
    ):
299
        yield ArgsKwargs(bounding_box_loader, format=bounding_box_loader.format, **params)
300
301
302


def sample_inputs_crop_mask():
303
    for mask_loader in make_mask_loaders(sizes=[(16, 17)], num_categories=[10], num_objects=[5]):
304
        yield ArgsKwargs(mask_loader, top=4, left=3, height=7, width=8)
305
306
307
308
309
310
311


def reference_inputs_crop_mask():
    for mask_loader, params in itertools.product(make_mask_loaders(extra_dims=[()], num_objects=[1]), _CROP_PARAMS):
        yield ArgsKwargs(mask_loader, **params)


312
def sample_inputs_crop_video():
313
    for video_loader in make_video_loaders(sizes=[(16, 17)], num_frames=[3]):
314
315
316
        yield ArgsKwargs(video_loader, top=4, left=3, height=7, width=8)


317
318
319
320
321
322
def reference_crop_bounding_box(bounding_box, *, format, top, left, height, width):
    affine_matrix = np.array(
        [
            [1, 0, -left],
            [0, 1, -top],
        ],
323
        dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
324
325
    )

326
327
328
329
330
    spatial_size = (height, width)
    expected_bboxes = reference_affine_bounding_box_helper(
        bounding_box, format=format, spatial_size=spatial_size, affine_matrix=affine_matrix
    )
    return expected_bboxes, spatial_size
331
332
333
334
335
336
337
338
339


def reference_inputs_crop_bounding_box():
    for bounding_box_loader, params in itertools.product(
        make_bounding_box_loaders(extra_dims=((), (4,))), [_CROP_PARAMS[0], _CROP_PARAMS[-1]]
    ):
        yield ArgsKwargs(bounding_box_loader, format=bounding_box_loader.format, **params)


340
341
342
343
344
345
346
347
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.crop_image_tensor,
            kernel_name="crop_image_tensor",
            sample_inputs_fn=sample_inputs_crop_image_tensor,
            reference_fn=pil_reference_wrapper(F.crop_image_pil),
            reference_inputs_fn=reference_inputs_crop_image_tensor,
348
            float32_vs_uint8=True,
349
350
351
352
        ),
        KernelInfo(
            F.crop_bounding_box,
            sample_inputs_fn=sample_inputs_crop_bounding_box,
353
354
            reference_fn=reference_crop_bounding_box,
            reference_inputs_fn=reference_inputs_crop_bounding_box,
355
356
357
358
359
360
        ),
        KernelInfo(
            F.crop_mask,
            sample_inputs_fn=sample_inputs_crop_mask,
            reference_fn=pil_reference_wrapper(F.crop_image_pil),
            reference_inputs_fn=reference_inputs_crop_mask,
361
            float32_vs_uint8=True,
362
        ),
363
364
365
366
        KernelInfo(
            F.crop_video,
            sample_inputs_fn=sample_inputs_crop_video,
        ),
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    ]
)

_RESIZED_CROP_PARAMS = combinations_grid(top=[-8, 9], left=[-8, 9], height=[12], width=[12], size=[(16, 18)])


def sample_inputs_resized_crop_image_tensor():
    for image_loader in make_image_loaders():
        yield ArgsKwargs(image_loader, **_RESIZED_CROP_PARAMS[0])


@pil_reference_wrapper
def reference_resized_crop_image_tensor(*args, **kwargs):
    if not kwargs.pop("antialias", False) and kwargs.get("interpolation", F.InterpolationMode.BILINEAR) in {
        F.InterpolationMode.BILINEAR,
        F.InterpolationMode.BICUBIC,
    }:
        raise pytest.UsageError("Anti-aliasing is always active in PIL")
    return F.resized_crop_image_pil(*args, **kwargs)


def reference_inputs_resized_crop_image_tensor():
    for image_loader, interpolation, params in itertools.product(
390
        make_image_loaders_for_interpolation(),
391
392
        [
            F.InterpolationMode.NEAREST,
393
            F.InterpolationMode.NEAREST_EXACT,
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
            F.InterpolationMode.BILINEAR,
            F.InterpolationMode.BICUBIC,
        ],
        _RESIZED_CROP_PARAMS,
    ):
        yield ArgsKwargs(
            image_loader,
            interpolation=interpolation,
            antialias=interpolation
            in {
                F.InterpolationMode.BILINEAR,
                F.InterpolationMode.BICUBIC,
            },
            **params,
        )


def sample_inputs_resized_crop_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders():
        yield ArgsKwargs(bounding_box_loader, format=bounding_box_loader.format, **_RESIZED_CROP_PARAMS[0])


def sample_inputs_resized_crop_mask():
    for mask_loader in make_mask_loaders():
        yield ArgsKwargs(mask_loader, **_RESIZED_CROP_PARAMS[0])


421
def sample_inputs_resized_crop_video():
422
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
423
424
425
        yield ArgsKwargs(video_loader, **_RESIZED_CROP_PARAMS[0])


426
427
428
429
430
431
432
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.resized_crop_image_tensor,
            sample_inputs_fn=sample_inputs_resized_crop_image_tensor,
            reference_fn=reference_resized_crop_image_tensor,
            reference_inputs_fn=reference_inputs_resized_crop_image_tensor,
433
            float32_vs_uint8=True,
434
            closeness_kwargs={
435
                **cuda_vs_cpu_pixel_difference(),
436
437
                **pil_reference_pixel_difference(3, mae=True),
                **float32_vs_uint8_pixel_difference(3, mae=True),
438
            },
439
440
441
442
443
444
445
446
447
        ),
        KernelInfo(
            F.resized_crop_bounding_box,
            sample_inputs_fn=sample_inputs_resized_crop_bounding_box,
        ),
        KernelInfo(
            F.resized_crop_mask,
            sample_inputs_fn=sample_inputs_resized_crop_mask,
        ),
448
449
450
        KernelInfo(
            F.resized_crop_video,
            sample_inputs_fn=sample_inputs_resized_crop_video,
451
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
452
        ),
453
454
455
456
457
458
459
460
461
462
    ]
)

_PAD_PARAMS = combinations_grid(
    padding=[[1], [1, 1], [1, 1, 2, 2]],
    padding_mode=["constant", "symmetric", "edge", "reflect"],
)


def sample_inputs_pad_image_tensor():
463
    make_pad_image_loaders = functools.partial(
464
        make_image_loaders, sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=["RGB"], dtypes=[torch.float32]
465
466
467
468
469
470
471
472
473
    )

    for image_loader, padding in itertools.product(
        make_pad_image_loaders(),
        [1, (1,), (1, 2), (1, 2, 3, 4), [1], [1, 2], [1, 2, 3, 4]],
    ):
        yield ArgsKwargs(image_loader, padding=padding)

    for image_loader in make_pad_image_loaders():
474
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
475
476
477
478
479
480
481
482
483
484
485
486
487
            yield ArgsKwargs(image_loader, padding=[1], fill=fill)

    for image_loader, padding_mode in itertools.product(
        # We branch for non-constant padding and integer inputs
        make_pad_image_loaders(dtypes=[torch.uint8]),
        ["constant", "symmetric", "edge", "reflect"],
    ):
        yield ArgsKwargs(image_loader, padding=[1], padding_mode=padding_mode)

    # `torch.nn.functional.pad` does not support symmetric padding, and thus we have a custom implementation. Besides
    # negative padding, this is already handled by the inputs above.
    for image_loader in make_pad_image_loaders():
        yield ArgsKwargs(image_loader, padding=[-1], padding_mode="symmetric")
488
489
490


def reference_inputs_pad_image_tensor():
491
492
493
494
495
496
497
    for image_loader, params in itertools.product(
        make_image_loaders(extra_dims=[()], dtypes=[torch.uint8]), _PAD_PARAMS
    ):
        for fill in get_fills(
            num_channels=image_loader.num_channels,
            dtype=image_loader.dtype,
        ):
498
499
500
501
            # FIXME: PIL kernel doesn't support sequences of length 1 if the number of channels is larger. Shouldn't it?
            if isinstance(fill, (list, tuple)):
                continue

502
503
504
505
            yield ArgsKwargs(image_loader, fill=fill, **params)


def sample_inputs_pad_bounding_box():
506
507
508
    for bounding_box_loader, padding in itertools.product(
        make_bounding_box_loaders(), [1, (1,), (1, 2), (1, 2, 3, 4), [1], [1, 2], [1, 2, 3, 4]]
    ):
509
        yield ArgsKwargs(
510
511
            bounding_box_loader,
            format=bounding_box_loader.format,
512
            spatial_size=bounding_box_loader.spatial_size,
513
514
            padding=padding,
            padding_mode="constant",
515
        )
516
517
518


def sample_inputs_pad_mask():
519
    for mask_loader in make_mask_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_categories=[10], num_objects=[5]):
520
        yield ArgsKwargs(mask_loader, padding=[1])
521
522
523


def reference_inputs_pad_mask():
524
525
526
527
    for mask_loader, fill, params in itertools.product(
        make_mask_loaders(num_objects=[1], extra_dims=[()]), [None, 127], _PAD_PARAMS
    ):
        yield ArgsKwargs(mask_loader, fill=fill, **params)
528
529


530
def sample_inputs_pad_video():
531
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
532
533
534
        yield ArgsKwargs(video_loader, padding=[1])


535
536
537
538
539
540
541
542
543
def reference_pad_bounding_box(bounding_box, *, format, spatial_size, padding, padding_mode):

    left, right, top, bottom = _parse_pad_padding(padding)

    affine_matrix = np.array(
        [
            [1, 0, left],
            [0, 1, top],
        ],
544
        dtype="float64" if bounding_box.dtype == torch.float64 else "float32",
545
546
547
548
549
    )

    height = spatial_size[0] + top + bottom
    width = spatial_size[1] + left + right

550
551
552
    expected_bboxes = reference_affine_bounding_box_helper(
        bounding_box, format=format, spatial_size=(height, width), affine_matrix=affine_matrix
    )
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
    return expected_bboxes, (height, width)


def reference_inputs_pad_bounding_box():
    for bounding_box_loader, padding in itertools.product(
        make_bounding_box_loaders(extra_dims=((), (4,))), [1, (1,), (1, 2), (1, 2, 3, 4), [1], [1, 2], [1, 2, 3, 4]]
    ):
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
            spatial_size=bounding_box_loader.spatial_size,
            padding=padding,
            padding_mode="constant",
        )


569
570
571
572
573
574
575
576
577
578
def pad_xfail_jit_fill_condition(args_kwargs):
    fill = args_kwargs.kwargs.get("fill")
    if not isinstance(fill, (list, tuple)):
        return False
    elif isinstance(fill, tuple):
        return True
    else:  # isinstance(fill, list):
        return all(isinstance(f, int) for f in fill)


579
580
581
582
583
584
585
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.pad_image_tensor,
            sample_inputs_fn=sample_inputs_pad_image_tensor,
            reference_fn=pil_reference_wrapper(F.pad_image_pil),
            reference_inputs_fn=reference_inputs_pad_image_tensor,
586
587
            float32_vs_uint8=float32_vs_uint8_fill_adapter,
            closeness_kwargs=float32_vs_uint8_pixel_difference(),
588
            test_marks=[
589
590
591
592
                xfail_jit_python_scalar_arg("padding"),
                xfail_jit(
                    "F.pad only supports vector fills for list of floats", condition=pad_xfail_jit_fill_condition
                ),
593
            ],
594
595
596
597
        ),
        KernelInfo(
            F.pad_bounding_box,
            sample_inputs_fn=sample_inputs_pad_bounding_box,
598
599
            reference_fn=reference_pad_bounding_box,
            reference_inputs_fn=reference_inputs_pad_bounding_box,
600
            test_marks=[
601
                xfail_jit_python_scalar_arg("padding"),
602
            ],
603
604
605
606
607
608
        ),
        KernelInfo(
            F.pad_mask,
            sample_inputs_fn=sample_inputs_pad_mask,
            reference_fn=pil_reference_wrapper(F.pad_image_pil),
            reference_inputs_fn=reference_inputs_pad_mask,
609
            float32_vs_uint8=float32_vs_uint8_fill_adapter,
610
        ),
611
612
613
614
        KernelInfo(
            F.pad_video,
            sample_inputs_fn=sample_inputs_pad_video,
        ),
615
616
617
618
619
620
621
    ]
)

_PERSPECTIVE_COEFFS = [
    [1.2405, 0.1772, -6.9113, 0.0463, 1.251, -5.235, 0.00013, 0.0018],
    [0.7366, -0.11724, 1.45775, -0.15012, 0.73406, 2.6019, -0.0072, -0.0063],
]
622
623
_STARTPOINTS = [[0, 1], [2, 3], [4, 5], [6, 7]]
_ENDPOINTS = [[9, 8], [7, 6], [5, 4], [3, 2]]
624
625
626


def sample_inputs_perspective_image_tensor():
627
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE]):
628
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
629
630
631
632
633
            yield ArgsKwargs(
                image_loader, startpoints=None, endpoints=None, fill=fill, coefficients=_PERSPECTIVE_COEFFS[0]
            )

    yield ArgsKwargs(make_image_loader(), startpoints=_STARTPOINTS, endpoints=_ENDPOINTS)
634
635
636


def reference_inputs_perspective_image_tensor():
637
638
639
640
641
642
643
    for image_loader, coefficients, interpolation in itertools.product(
        make_image_loaders_for_interpolation(),
        _PERSPECTIVE_COEFFS,
        [
            F.InterpolationMode.NEAREST,
            F.InterpolationMode.BILINEAR,
        ],
644
645
    ):
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
646
647
648
649
            # FIXME: PIL kernel doesn't support sequences of length 1 if the number of channels is larger. Shouldn't it?
            if isinstance(fill, (list, tuple)):
                continue

650
651
652
653
654
655
656
657
            yield ArgsKwargs(
                image_loader,
                startpoints=None,
                endpoints=None,
                interpolation=interpolation,
                fill=fill,
                coefficients=coefficients,
            )
658
659
660
661
662


def sample_inputs_perspective_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders():
        yield ArgsKwargs(
663
664
            bounding_box_loader,
            format=bounding_box_loader.format,
665
            spatial_size=bounding_box_loader.spatial_size,
666
667
668
            startpoints=None,
            endpoints=None,
            coefficients=_PERSPECTIVE_COEFFS[0],
669
670
        )

671
    format = datapoints.BoundingBoxFormat.XYXY
672
    loader = make_bounding_box_loader(format=format)
673
    yield ArgsKwargs(
674
        loader, format=format, spatial_size=loader.spatial_size, startpoints=_STARTPOINTS, endpoints=_ENDPOINTS
675
676
    )

677
678

def sample_inputs_perspective_mask():
679
    for mask_loader in make_mask_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE]):
680
681
682
        yield ArgsKwargs(mask_loader, startpoints=None, endpoints=None, coefficients=_PERSPECTIVE_COEFFS[0])

    yield ArgsKwargs(make_detection_mask_loader(), startpoints=_STARTPOINTS, endpoints=_ENDPOINTS)
683
684
685
686
687
688


def reference_inputs_perspective_mask():
    for mask_loader, perspective_coeffs in itertools.product(
        make_mask_loaders(extra_dims=[()], num_objects=[1]), _PERSPECTIVE_COEFFS
    ):
689
        yield ArgsKwargs(mask_loader, startpoints=None, endpoints=None, coefficients=perspective_coeffs)
690
691


692
def sample_inputs_perspective_video():
693
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
694
695
696
        yield ArgsKwargs(video_loader, startpoints=None, endpoints=None, coefficients=_PERSPECTIVE_COEFFS[0])

    yield ArgsKwargs(make_video_loader(), startpoints=_STARTPOINTS, endpoints=_ENDPOINTS)
697
698


699
700
701
702
703
704
705
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.perspective_image_tensor,
            sample_inputs_fn=sample_inputs_perspective_image_tensor,
            reference_fn=pil_reference_wrapper(F.perspective_image_pil),
            reference_inputs_fn=reference_inputs_perspective_image_tensor,
706
            float32_vs_uint8=float32_vs_uint8_fill_adapter,
707
            closeness_kwargs={
708
                **pil_reference_pixel_difference(2, mae=True),
709
710
                **cuda_vs_cpu_pixel_difference(),
                **float32_vs_uint8_pixel_difference(),
711
712
                **scripted_vs_eager_float64_tolerances("cpu", atol=1e-5, rtol=1e-5),
                **scripted_vs_eager_float64_tolerances("cuda", atol=1e-5, rtol=1e-5),
713
            },
714
            test_marks=[xfail_jit_python_scalar_arg("fill")],
715
716
717
718
        ),
        KernelInfo(
            F.perspective_bounding_box,
            sample_inputs_fn=sample_inputs_perspective_bounding_box,
719
720
721
722
            closeness_kwargs={
                **scripted_vs_eager_float64_tolerances("cpu", atol=1e-6, rtol=1e-6),
                **scripted_vs_eager_float64_tolerances("cuda", atol=1e-6, rtol=1e-6),
            },
723
724
725
726
727
728
        ),
        KernelInfo(
            F.perspective_mask,
            sample_inputs_fn=sample_inputs_perspective_mask,
            reference_fn=pil_reference_wrapper(F.perspective_image_pil),
            reference_inputs_fn=reference_inputs_perspective_mask,
729
730
731
732
            float32_vs_uint8=True,
            closeness_kwargs={
                (("TestKernels", "test_against_reference"), torch.uint8, "cpu"): dict(atol=10, rtol=0),
            },
733
734
735
736
        ),
        KernelInfo(
            F.perspective_video,
            sample_inputs_fn=sample_inputs_perspective_video,
737
738
            closeness_kwargs={
                **cuda_vs_cpu_pixel_difference(),
739
740
                **scripted_vs_eager_float64_tolerances("cpu", atol=1e-5, rtol=1e-5),
                **scripted_vs_eager_float64_tolerances("cuda", atol=1e-5, rtol=1e-5),
741
            },
742
743
744
745
746
        ),
    ]
)


747
748
def _get_elastic_displacement(spatial_size):
    return torch.rand(1, *spatial_size, 2)
749
750
751


def sample_inputs_elastic_image_tensor():
752
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE]):
753
        displacement = _get_elastic_displacement(image_loader.spatial_size)
754
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
755
756
757
758
759
            yield ArgsKwargs(image_loader, displacement=displacement, fill=fill)


def reference_inputs_elastic_image_tensor():
    for image_loader, interpolation in itertools.product(
760
        make_image_loaders_for_interpolation(),
761
762
763
764
765
766
        [
            F.InterpolationMode.NEAREST,
            F.InterpolationMode.BILINEAR,
            F.InterpolationMode.BICUBIC,
        ],
    ):
767
        displacement = _get_elastic_displacement(image_loader.spatial_size)
768
        for fill in get_fills(num_channels=image_loader.num_channels, dtype=image_loader.dtype):
769
770
771
772
773
            yield ArgsKwargs(image_loader, interpolation=interpolation, displacement=displacement, fill=fill)


def sample_inputs_elastic_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders():
774
        displacement = _get_elastic_displacement(bounding_box_loader.spatial_size)
775
776
777
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
778
            spatial_size=bounding_box_loader.spatial_size,
779
780
781
782
783
            displacement=displacement,
        )


def sample_inputs_elastic_mask():
784
    for mask_loader in make_mask_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE]):
785
786
787
788
        displacement = _get_elastic_displacement(mask_loader.shape[-2:])
        yield ArgsKwargs(mask_loader, displacement=displacement)


789
def sample_inputs_elastic_video():
790
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
791
792
793
794
        displacement = _get_elastic_displacement(video_loader.shape[-2:])
        yield ArgsKwargs(video_loader, displacement=displacement)


795
796
797
798
799
800
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.elastic_image_tensor,
            sample_inputs_fn=sample_inputs_elastic_image_tensor,
            reference_inputs_fn=reference_inputs_elastic_image_tensor,
801
            float32_vs_uint8=float32_vs_uint8_fill_adapter,
802
            closeness_kwargs={
803
                **float32_vs_uint8_pixel_difference(6, mae=True),
804
805
                **cuda_vs_cpu_pixel_difference(),
            },
806
            test_marks=[xfail_jit_python_scalar_arg("fill")],
807
808
809
810
811
812
813
814
        ),
        KernelInfo(
            F.elastic_bounding_box,
            sample_inputs_fn=sample_inputs_elastic_bounding_box,
        ),
        KernelInfo(
            F.elastic_mask,
            sample_inputs_fn=sample_inputs_elastic_mask,
815
816
817
818
        ),
        KernelInfo(
            F.elastic_video,
            sample_inputs_fn=sample_inputs_elastic_video,
819
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
820
821
822
823
824
        ),
    ]
)


825
_CENTER_CROP_SPATIAL_SIZES = [(16, 16), (7, 33), (31, 9)]
826
_CENTER_CROP_OUTPUT_SIZES = [[4, 3], [42, 70], [4], 3, (5, 2), (6,)]
827
828
829
830


def sample_inputs_center_crop_image_tensor():
    for image_loader, output_size in itertools.product(
831
        make_image_loaders(sizes=[(16, 17)], color_spaces=["RGB"], dtypes=[torch.float32]),
832
833
834
835
836
837
        [
            # valid `output_size` types for which cropping is applied to both dimensions
            *[5, (4,), (2, 3), [6], [3, 2]],
            # `output_size`'s for which at least one dimension needs to be padded
            *[[4, 18], [17, 5], [17, 18]],
        ],
838
839
840
841
842
843
    ):
        yield ArgsKwargs(image_loader, output_size=output_size)


def reference_inputs_center_crop_image_tensor():
    for image_loader, output_size in itertools.product(
844
845
        make_image_loaders(sizes=_CENTER_CROP_SPATIAL_SIZES, extra_dims=[()], dtypes=[torch.uint8]),
        _CENTER_CROP_OUTPUT_SIZES,
846
847
848
849
850
851
852
853
854
    ):
        yield ArgsKwargs(image_loader, output_size=output_size)


def sample_inputs_center_crop_bounding_box():
    for bounding_box_loader, output_size in itertools.product(make_bounding_box_loaders(), _CENTER_CROP_OUTPUT_SIZES):
        yield ArgsKwargs(
            bounding_box_loader,
            format=bounding_box_loader.format,
855
            spatial_size=bounding_box_loader.spatial_size,
856
857
858
859
860
            output_size=output_size,
        )


def sample_inputs_center_crop_mask():
861
    for mask_loader in make_mask_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_categories=[10], num_objects=[5]):
862
863
        height, width = mask_loader.shape[-2:]
        yield ArgsKwargs(mask_loader, output_size=(height // 2, width // 2))
864
865
866
867


def reference_inputs_center_crop_mask():
    for mask_loader, output_size in itertools.product(
868
        make_mask_loaders(sizes=_CENTER_CROP_SPATIAL_SIZES, extra_dims=[()], num_objects=[1]), _CENTER_CROP_OUTPUT_SIZES
869
870
871
872
    ):
        yield ArgsKwargs(mask_loader, output_size=output_size)


873
def sample_inputs_center_crop_video():
874
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
875
876
877
878
        height, width = video_loader.shape[-2:]
        yield ArgsKwargs(video_loader, output_size=(height // 2, width // 2))


879
880
881
882
883
884
885
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.center_crop_image_tensor,
            sample_inputs_fn=sample_inputs_center_crop_image_tensor,
            reference_fn=pil_reference_wrapper(F.center_crop_image_pil),
            reference_inputs_fn=reference_inputs_center_crop_image_tensor,
886
            float32_vs_uint8=True,
887
            test_marks=[
888
                xfail_jit_python_scalar_arg("output_size"),
889
            ],
890
891
892
893
        ),
        KernelInfo(
            F.center_crop_bounding_box,
            sample_inputs_fn=sample_inputs_center_crop_bounding_box,
894
            test_marks=[
895
                xfail_jit_python_scalar_arg("output_size"),
896
            ],
897
898
899
900
901
902
        ),
        KernelInfo(
            F.center_crop_mask,
            sample_inputs_fn=sample_inputs_center_crop_mask,
            reference_fn=pil_reference_wrapper(F.center_crop_image_pil),
            reference_inputs_fn=reference_inputs_center_crop_mask,
903
            float32_vs_uint8=True,
904
            test_marks=[
905
                xfail_jit_python_scalar_arg("output_size"),
906
            ],
907
        ),
908
909
910
911
        KernelInfo(
            F.center_crop_video,
            sample_inputs_fn=sample_inputs_center_crop_video,
        ),
912
913
914
915
916
    ]
)


def sample_inputs_gaussian_blur_image_tensor():
917
    make_gaussian_blur_image_loaders = functools.partial(make_image_loaders, sizes=[(7, 33)], color_spaces=["RGB"])
918
919
920
921
922
923

    for image_loader, kernel_size in itertools.product(make_gaussian_blur_image_loaders(), [5, (3, 3), [3, 3]]):
        yield ArgsKwargs(image_loader, kernel_size=kernel_size)

    for image_loader, sigma in itertools.product(
        make_gaussian_blur_image_loaders(), [None, (3.0, 3.0), [2.0, 2.0], 4.0, [1.5], (3.14,)]
924
    ):
925
        yield ArgsKwargs(image_loader, kernel_size=5, sigma=sigma)
926
927


928
def sample_inputs_gaussian_blur_video():
929
    for video_loader in make_video_loaders(sizes=[(7, 33)], num_frames=[5]):
930
931
932
933
934
935
936
937
        yield ArgsKwargs(video_loader, kernel_size=[3, 3])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.gaussian_blur_image_tensor,
            sample_inputs_fn=sample_inputs_gaussian_blur_image_tensor,
938
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
939
940
941
942
943
944
945
946
            test_marks=[
                xfail_jit_python_scalar_arg("kernel_size"),
                xfail_jit_python_scalar_arg("sigma"),
            ],
        ),
        KernelInfo(
            F.gaussian_blur_video,
            sample_inputs_fn=sample_inputs_gaussian_blur_video,
947
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
948
949
        ),
    ]
950
951
952
953
)


def sample_inputs_equalize_image_tensor():
954
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
955
956
957
958
        yield ArgsKwargs(image_loader)


def reference_inputs_equalize_image_tensor():
959
960
961
    # We are not using `make_image_loaders` here since that uniformly samples the values over the whole value range.
    # Since the whole point of this kernel is to transform an arbitrary distribution of values into a uniform one,
    # the information gain is low if we already provide something really close to the expected value.
962
    def make_uniform_band_image(shape, dtype, device, *, low_factor, high_factor, memory_format):
963
964
965
966
967
968
969
        if dtype.is_floating_point:
            low = low_factor
            high = high_factor
        else:
            max_value = torch.iinfo(dtype).max
            low = int(low_factor * max_value)
            high = int(high_factor * max_value)
970
971
972
        return torch.testing.make_tensor(shape, dtype=dtype, device=device, low=low, high=high).to(
            memory_format=memory_format, copy=True
        )
973

974
    def make_beta_distributed_image(shape, dtype, device, *, alpha, beta, memory_format):
975
976
977
        image = torch.distributions.Beta(alpha, beta).sample(shape)
        if not dtype.is_floating_point:
            image.mul_(torch.iinfo(dtype).max).round_()
978
        return image.to(dtype=dtype, device=device, memory_format=memory_format, copy=True)
979

980
    spatial_size = (256, 256)
981
    for dtype, color_space, fn in itertools.product(
982
        [torch.uint8],
983
        ["GRAY", "RGB"],
984
        [
985
986
            lambda shape, dtype, device, memory_format: torch.zeros(shape, dtype=dtype, device=device).to(
                memory_format=memory_format, copy=True
987
            ),
988
989
990
            lambda shape, dtype, device, memory_format: torch.full(
                shape, 1.0 if dtype.is_floating_point else torch.iinfo(dtype).max, dtype=dtype, device=device
            ).to(memory_format=memory_format, copy=True),
991
            *[
992
993
994
995
996
                functools.partial(make_uniform_band_image, low_factor=low_factor, high_factor=high_factor)
                for low_factor, high_factor in [
                    (0.0, 0.25),
                    (0.25, 0.75),
                    (0.75, 1.0),
997
998
999
                ]
            ],
            *[
1000
                functools.partial(make_beta_distributed_image, alpha=alpha, beta=beta)
1001
1002
1003
1004
1005
1006
1007
1008
                for alpha, beta in [
                    (0.5, 0.5),
                    (2, 2),
                    (2, 5),
                    (5, 2),
                ]
            ],
        ],
1009
    ):
1010
        image_loader = ImageLoader(fn, shape=(get_num_channels(color_space), *spatial_size), dtype=dtype)
1011
1012
1013
        yield ArgsKwargs(image_loader)


1014
def sample_inputs_equalize_video():
1015
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
        yield ArgsKwargs(video_loader)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.equalize_image_tensor,
            kernel_name="equalize_image_tensor",
            sample_inputs_fn=sample_inputs_equalize_image_tensor,
            reference_fn=pil_reference_wrapper(F.equalize_image_pil),
1026
            float32_vs_uint8=True,
1027
1028
1029
1030
1031
1032
1033
            reference_inputs_fn=reference_inputs_equalize_image_tensor,
        ),
        KernelInfo(
            F.equalize_video,
            sample_inputs_fn=sample_inputs_equalize_video,
        ),
    ]
1034
1035
1036
1037
)


def sample_inputs_invert_image_tensor():
1038
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
1039
1040
1041
1042
        yield ArgsKwargs(image_loader)


def reference_inputs_invert_image_tensor():
1043
    for image_loader in make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]):
1044
1045
1046
        yield ArgsKwargs(image_loader)


1047
def sample_inputs_invert_video():
1048
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
        yield ArgsKwargs(video_loader)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.invert_image_tensor,
            kernel_name="invert_image_tensor",
            sample_inputs_fn=sample_inputs_invert_image_tensor,
            reference_fn=pil_reference_wrapper(F.invert_image_pil),
            reference_inputs_fn=reference_inputs_invert_image_tensor,
1060
            float32_vs_uint8=True,
1061
1062
1063
1064
1065
1066
        ),
        KernelInfo(
            F.invert_video,
            sample_inputs_fn=sample_inputs_invert_video,
        ),
    ]
1067
1068
1069
1070
1071
1072
1073
)


_POSTERIZE_BITS = [1, 4, 8]


def sample_inputs_posterize_image_tensor():
1074
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
1075
1076
1077
1078
1079
        yield ArgsKwargs(image_loader, bits=_POSTERIZE_BITS[0])


def reference_inputs_posterize_image_tensor():
    for image_loader, bits in itertools.product(
1080
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1081
1082
1083
1084
1085
        _POSTERIZE_BITS,
    ):
        yield ArgsKwargs(image_loader, bits=bits)


1086
def sample_inputs_posterize_video():
1087
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
        yield ArgsKwargs(video_loader, bits=_POSTERIZE_BITS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.posterize_image_tensor,
            kernel_name="posterize_image_tensor",
            sample_inputs_fn=sample_inputs_posterize_image_tensor,
            reference_fn=pil_reference_wrapper(F.posterize_image_pil),
            reference_inputs_fn=reference_inputs_posterize_image_tensor,
1099
1100
            float32_vs_uint8=True,
            closeness_kwargs=float32_vs_uint8_pixel_difference(),
1101
1102
1103
1104
1105
1106
        ),
        KernelInfo(
            F.posterize_video,
            sample_inputs_fn=sample_inputs_posterize_video,
        ),
    ]
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
)


def _get_solarize_thresholds(dtype):
    for factor in [0.1, 0.5]:
        max_value = get_max_value(dtype)
        yield (float if dtype.is_floating_point else int)(max_value * factor)


def sample_inputs_solarize_image_tensor():
1117
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
1118
1119
1120
1121
        yield ArgsKwargs(image_loader, threshold=next(_get_solarize_thresholds(image_loader.dtype)))


def reference_inputs_solarize_image_tensor():
1122
    for image_loader in make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]):
1123
1124
1125
1126
        for threshold in _get_solarize_thresholds(image_loader.dtype):
            yield ArgsKwargs(image_loader, threshold=threshold)


1127
1128
1129
1130
def uint8_to_float32_threshold_adapter(other_args, kwargs):
    return other_args, dict(threshold=kwargs["threshold"] / 255)


1131
def sample_inputs_solarize_video():
1132
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
        yield ArgsKwargs(video_loader, threshold=next(_get_solarize_thresholds(video_loader.dtype)))


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.solarize_image_tensor,
            kernel_name="solarize_image_tensor",
            sample_inputs_fn=sample_inputs_solarize_image_tensor,
            reference_fn=pil_reference_wrapper(F.solarize_image_pil),
            reference_inputs_fn=reference_inputs_solarize_image_tensor,
1144
1145
            float32_vs_uint8=uint8_to_float32_threshold_adapter,
            closeness_kwargs=float32_vs_uint8_pixel_difference(),
1146
1147
1148
1149
1150
1151
        ),
        KernelInfo(
            F.solarize_video,
            sample_inputs_fn=sample_inputs_solarize_video,
        ),
    ]
1152
1153
1154
1155
)


def sample_inputs_autocontrast_image_tensor():
1156
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
1157
1158
1159
1160
        yield ArgsKwargs(image_loader)


def reference_inputs_autocontrast_image_tensor():
1161
    for image_loader in make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]):
1162
1163
1164
        yield ArgsKwargs(image_loader)


1165
def sample_inputs_autocontrast_video():
1166
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
        yield ArgsKwargs(video_loader)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.autocontrast_image_tensor,
            kernel_name="autocontrast_image_tensor",
            sample_inputs_fn=sample_inputs_autocontrast_image_tensor,
            reference_fn=pil_reference_wrapper(F.autocontrast_image_pil),
            reference_inputs_fn=reference_inputs_autocontrast_image_tensor,
1178
1179
1180
1181
1182
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(),
                **float32_vs_uint8_pixel_difference(),
            },
1183
1184
1185
1186
1187
1188
        ),
        KernelInfo(
            F.autocontrast_video,
            sample_inputs_fn=sample_inputs_autocontrast_video,
        ),
    ]
1189
1190
1191
1192
1193
1194
1195
)

_ADJUST_SHARPNESS_FACTORS = [0.1, 0.5]


def sample_inputs_adjust_sharpness_image_tensor():
    for image_loader in make_image_loaders(
1196
        sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE, (2, 2)],
1197
        color_spaces=("GRAY", "RGB"),
1198
1199
1200
1201
1202
1203
    ):
        yield ArgsKwargs(image_loader, sharpness_factor=_ADJUST_SHARPNESS_FACTORS[0])


def reference_inputs_adjust_sharpness_image_tensor():
    for image_loader, sharpness_factor in itertools.product(
1204
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1205
1206
1207
1208
1209
        _ADJUST_SHARPNESS_FACTORS,
    ):
        yield ArgsKwargs(image_loader, sharpness_factor=sharpness_factor)


1210
def sample_inputs_adjust_sharpness_video():
1211
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
        yield ArgsKwargs(video_loader, sharpness_factor=_ADJUST_SHARPNESS_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_sharpness_image_tensor,
            kernel_name="adjust_sharpness_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_sharpness_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_sharpness_image_pil),
            reference_inputs_fn=reference_inputs_adjust_sharpness_image_tensor,
1223
1224
            float32_vs_uint8=True,
            closeness_kwargs=float32_vs_uint8_pixel_difference(2),
1225
1226
1227
1228
1229
1230
        ),
        KernelInfo(
            F.adjust_sharpness_video,
            sample_inputs_fn=sample_inputs_adjust_sharpness_video,
        ),
    ]
1231
1232
1233
1234
)


def sample_inputs_erase_image_tensor():
1235
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE]):
1236
1237
1238
1239
1240
1241
        # FIXME: make the parameters more diverse
        h, w = 6, 7
        v = torch.rand(image_loader.num_channels, h, w)
        yield ArgsKwargs(image_loader, i=1, j=2, h=h, w=w, v=v)


1242
def sample_inputs_erase_video():
1243
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
        # FIXME: make the parameters more diverse
        h, w = 6, 7
        v = torch.rand(video_loader.num_channels, h, w)
        yield ArgsKwargs(video_loader, i=1, j=2, h=h, w=w, v=v)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.erase_image_tensor,
            kernel_name="erase_image_tensor",
            sample_inputs_fn=sample_inputs_erase_image_tensor,
        ),
        KernelInfo(
            F.erase_video,
            sample_inputs_fn=sample_inputs_erase_video,
        ),
    ]
1262
)
1263
1264
1265
1266
1267

_ADJUST_BRIGHTNESS_FACTORS = [0.1, 0.5]


def sample_inputs_adjust_brightness_image_tensor():
1268
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
1269
1270
1271
1272
1273
        yield ArgsKwargs(image_loader, brightness_factor=_ADJUST_BRIGHTNESS_FACTORS[0])


def reference_inputs_adjust_brightness_image_tensor():
    for image_loader, brightness_factor in itertools.product(
1274
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1275
1276
1277
1278
1279
        _ADJUST_BRIGHTNESS_FACTORS,
    ):
        yield ArgsKwargs(image_loader, brightness_factor=brightness_factor)


1280
def sample_inputs_adjust_brightness_video():
1281
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
        yield ArgsKwargs(video_loader, brightness_factor=_ADJUST_BRIGHTNESS_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_brightness_image_tensor,
            kernel_name="adjust_brightness_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_brightness_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_brightness_image_pil),
            reference_inputs_fn=reference_inputs_adjust_brightness_image_tensor,
1293
1294
            float32_vs_uint8=True,
            closeness_kwargs=float32_vs_uint8_pixel_difference(),
1295
1296
1297
1298
1299
1300
        ),
        KernelInfo(
            F.adjust_brightness_video,
            sample_inputs_fn=sample_inputs_adjust_brightness_video,
        ),
    ]
1301
1302
1303
1304
1305
1306
1307
)


_ADJUST_CONTRAST_FACTORS = [0.1, 0.5]


def sample_inputs_adjust_contrast_image_tensor():
1308
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
1309
1310
1311
1312
1313
        yield ArgsKwargs(image_loader, contrast_factor=_ADJUST_CONTRAST_FACTORS[0])


def reference_inputs_adjust_contrast_image_tensor():
    for image_loader, contrast_factor in itertools.product(
1314
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1315
1316
1317
1318
1319
        _ADJUST_CONTRAST_FACTORS,
    ):
        yield ArgsKwargs(image_loader, contrast_factor=contrast_factor)


1320
def sample_inputs_adjust_contrast_video():
1321
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
        yield ArgsKwargs(video_loader, contrast_factor=_ADJUST_CONTRAST_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_contrast_image_tensor,
            kernel_name="adjust_contrast_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_contrast_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_contrast_image_pil),
            reference_inputs_fn=reference_inputs_adjust_contrast_image_tensor,
1333
1334
1335
1336
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(),
                **float32_vs_uint8_pixel_difference(2),
1337
                **cuda_vs_cpu_pixel_difference(),
1338
                (("TestKernels", "test_against_reference"), torch.uint8, "cpu"): pixel_difference_closeness_kwargs(1),
1339
            },
1340
1341
1342
1343
        ),
        KernelInfo(
            F.adjust_contrast_video,
            sample_inputs_fn=sample_inputs_adjust_contrast_video,
1344
1345
1346
1347
            closeness_kwargs={
                **cuda_vs_cpu_pixel_difference(),
                (("TestKernels", "test_against_reference"), torch.uint8, "cpu"): pixel_difference_closeness_kwargs(1),
            },
1348
1349
        ),
    ]
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
)

_ADJUST_GAMMA_GAMMAS_GAINS = [
    (0.5, 2.0),
    (0.0, 1.0),
]


def sample_inputs_adjust_gamma_image_tensor():
    gamma, gain = _ADJUST_GAMMA_GAMMAS_GAINS[0]
1360
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
1361
1362
1363
1364
1365
        yield ArgsKwargs(image_loader, gamma=gamma, gain=gain)


def reference_inputs_adjust_gamma_image_tensor():
    for image_loader, (gamma, gain) in itertools.product(
1366
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1367
1368
1369
1370
1371
        _ADJUST_GAMMA_GAMMAS_GAINS,
    ):
        yield ArgsKwargs(image_loader, gamma=gamma, gain=gain)


1372
1373
def sample_inputs_adjust_gamma_video():
    gamma, gain = _ADJUST_GAMMA_GAMMAS_GAINS[0]
1374
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
        yield ArgsKwargs(video_loader, gamma=gamma, gain=gain)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_gamma_image_tensor,
            kernel_name="adjust_gamma_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_gamma_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_gamma_image_pil),
            reference_inputs_fn=reference_inputs_adjust_gamma_image_tensor,
1386
1387
1388
1389
1390
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(),
                **float32_vs_uint8_pixel_difference(),
            },
1391
1392
1393
1394
1395
1396
        ),
        KernelInfo(
            F.adjust_gamma_video,
            sample_inputs_fn=sample_inputs_adjust_gamma_video,
        ),
    ]
1397
1398
1399
1400
1401
1402
1403
)


_ADJUST_HUE_FACTORS = [-0.1, 0.5]


def sample_inputs_adjust_hue_image_tensor():
1404
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
1405
1406
1407
1408
1409
        yield ArgsKwargs(image_loader, hue_factor=_ADJUST_HUE_FACTORS[0])


def reference_inputs_adjust_hue_image_tensor():
    for image_loader, hue_factor in itertools.product(
1410
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1411
1412
1413
1414
1415
        _ADJUST_HUE_FACTORS,
    ):
        yield ArgsKwargs(image_loader, hue_factor=hue_factor)


1416
def sample_inputs_adjust_hue_video():
1417
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
        yield ArgsKwargs(video_loader, hue_factor=_ADJUST_HUE_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_hue_image_tensor,
            kernel_name="adjust_hue_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_hue_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_hue_image_pil),
            reference_inputs_fn=reference_inputs_adjust_hue_image_tensor,
1429
1430
            float32_vs_uint8=True,
            closeness_kwargs={
1431
                **pil_reference_pixel_difference(2, mae=True),
1432
1433
                **float32_vs_uint8_pixel_difference(),
            },
1434
1435
1436
1437
1438
1439
        ),
        KernelInfo(
            F.adjust_hue_video,
            sample_inputs_fn=sample_inputs_adjust_hue_video,
        ),
    ]
1440
1441
1442
1443
1444
1445
)

_ADJUST_SATURATION_FACTORS = [0.1, 0.5]


def sample_inputs_adjust_saturation_image_tensor():
1446
    for image_loader in make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=("GRAY", "RGB")):
1447
1448
1449
1450
1451
        yield ArgsKwargs(image_loader, saturation_factor=_ADJUST_SATURATION_FACTORS[0])


def reference_inputs_adjust_saturation_image_tensor():
    for image_loader, saturation_factor in itertools.product(
1452
        make_image_loaders(color_spaces=("GRAY", "RGB"), extra_dims=[()], dtypes=[torch.uint8]),
1453
1454
1455
1456
1457
        _ADJUST_SATURATION_FACTORS,
    ):
        yield ArgsKwargs(image_loader, saturation_factor=saturation_factor)


1458
def sample_inputs_adjust_saturation_video():
1459
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
        yield ArgsKwargs(video_loader, saturation_factor=_ADJUST_SATURATION_FACTORS[0])


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.adjust_saturation_image_tensor,
            kernel_name="adjust_saturation_image_tensor",
            sample_inputs_fn=sample_inputs_adjust_saturation_image_tensor,
            reference_fn=pil_reference_wrapper(F.adjust_saturation_image_pil),
            reference_inputs_fn=reference_inputs_adjust_saturation_image_tensor,
1471
1472
1473
1474
            float32_vs_uint8=True,
            closeness_kwargs={
                **pil_reference_pixel_difference(),
                **float32_vs_uint8_pixel_difference(2),
1475
                **cuda_vs_cpu_pixel_difference(),
1476
            },
1477
1478
1479
1480
        ),
        KernelInfo(
            F.adjust_saturation_video,
            sample_inputs_fn=sample_inputs_adjust_saturation_video,
1481
            closeness_kwargs=cuda_vs_cpu_pixel_difference(),
1482
1483
        ),
    ]
1484
1485
1486
1487
1488
1489
)


def sample_inputs_clamp_bounding_box():
    for bounding_box_loader in make_bounding_box_loaders():
        yield ArgsKwargs(
1490
            bounding_box_loader,
1491
1492
            format=bounding_box_loader.format,
            spatial_size=bounding_box_loader.spatial_size,
1493
1494
1495
1496
1497
1498
1499
        )


KERNEL_INFOS.append(
    KernelInfo(
        F.clamp_bounding_box,
        sample_inputs_fn=sample_inputs_clamp_bounding_box,
1500
        logs_usage=True,
1501
1502
1503
1504
1505
1506
    )
)

_FIVE_TEN_CROP_SIZES = [7, (6,), [5], (6, 5), [7, 6]]


1507
def _get_five_ten_crop_spatial_size(size):
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
    if isinstance(size, int):
        crop_height = crop_width = size
    elif len(size) == 1:
        crop_height = crop_width = size[0]
    else:
        crop_height, crop_width = size
    return 2 * crop_height, 2 * crop_width


def sample_inputs_five_crop_image_tensor():
    for size in _FIVE_TEN_CROP_SIZES:
1519
        for image_loader in make_image_loaders(
1520
            sizes=[_get_five_ten_crop_spatial_size(size)],
1521
            color_spaces=["RGB"],
1522
            dtypes=[torch.float32],
1523
        ):
1524
1525
1526
1527
1528
            yield ArgsKwargs(image_loader, size=size)


def reference_inputs_five_crop_image_tensor():
    for size in _FIVE_TEN_CROP_SIZES:
1529
1530
1531
        for image_loader in make_image_loaders(
            sizes=[_get_five_ten_crop_spatial_size(size)], extra_dims=[()], dtypes=[torch.uint8]
        ):
1532
1533
1534
            yield ArgsKwargs(image_loader, size=size)


1535
1536
1537
1538
1539
1540
def sample_inputs_five_crop_video():
    size = _FIVE_TEN_CROP_SIZES[0]
    for video_loader in make_video_loaders(sizes=[_get_five_ten_crop_spatial_size(size)]):
        yield ArgsKwargs(video_loader, size=size)


1541
1542
def sample_inputs_ten_crop_image_tensor():
    for size, vertical_flip in itertools.product(_FIVE_TEN_CROP_SIZES, [False, True]):
1543
        for image_loader in make_image_loaders(
1544
            sizes=[_get_five_ten_crop_spatial_size(size)],
1545
            color_spaces=["RGB"],
1546
            dtypes=[torch.float32],
1547
        ):
1548
1549
1550
1551
1552
            yield ArgsKwargs(image_loader, size=size, vertical_flip=vertical_flip)


def reference_inputs_ten_crop_image_tensor():
    for size, vertical_flip in itertools.product(_FIVE_TEN_CROP_SIZES, [False, True]):
1553
1554
1555
        for image_loader in make_image_loaders(
            sizes=[_get_five_ten_crop_spatial_size(size)], extra_dims=[()], dtypes=[torch.uint8]
        ):
1556
1557
1558
            yield ArgsKwargs(image_loader, size=size, vertical_flip=vertical_flip)


1559
1560
1561
1562
1563
1564
def sample_inputs_ten_crop_video():
    size = _FIVE_TEN_CROP_SIZES[0]
    for video_loader in make_video_loaders(sizes=[_get_five_ten_crop_spatial_size(size)]):
        yield ArgsKwargs(video_loader, size=size)


1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
def multi_crop_pil_reference_wrapper(pil_kernel):
    def wrapper(input_tensor, *other_args, **kwargs):
        output = pil_reference_wrapper(pil_kernel)(input_tensor, *other_args, **kwargs)
        return type(output)(
            F.convert_dtype_image_tensor(F.to_image_tensor(output_pil), dtype=input_tensor.dtype)
            for output_pil in output
        )

    return wrapper


1576
1577
1578
1579
1580
_common_five_ten_crop_marks = [
    xfail_jit_python_scalar_arg("size"),
    mark_framework_limitation(("TestKernels", "test_batched_vs_single"), "Custom batching needed."),
]

1581
1582
1583
1584
1585
KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.five_crop_image_tensor,
            sample_inputs_fn=sample_inputs_five_crop_image_tensor,
1586
            reference_fn=multi_crop_pil_reference_wrapper(F.five_crop_image_pil),
1587
            reference_inputs_fn=reference_inputs_five_crop_image_tensor,
1588
            test_marks=_common_five_ten_crop_marks,
1589
        ),
1590
1591
1592
1593
1594
        KernelInfo(
            F.five_crop_video,
            sample_inputs_fn=sample_inputs_five_crop_video,
            test_marks=_common_five_ten_crop_marks,
        ),
1595
1596
1597
        KernelInfo(
            F.ten_crop_image_tensor,
            sample_inputs_fn=sample_inputs_ten_crop_image_tensor,
1598
            reference_fn=multi_crop_pil_reference_wrapper(F.ten_crop_image_pil),
1599
            reference_inputs_fn=reference_inputs_ten_crop_image_tensor,
1600
            test_marks=_common_five_ten_crop_marks,
1601
        ),
1602
1603
1604
1605
1606
        KernelInfo(
            F.ten_crop_video,
            sample_inputs_fn=sample_inputs_ten_crop_video,
            test_marks=_common_five_ten_crop_marks,
        ),
1607
1608
1609
1610
1611
1612
    ]
)

_NORMALIZE_MEANS_STDS = [
    ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
    ([0.0, 0.0, 0.0], [1.0, 1.0, 1.0]),
1613
    (0.5, 2.0),
1614
1615
1616
1617
1618
]


def sample_inputs_normalize_image_tensor():
    for image_loader, (mean, std) in itertools.product(
1619
        make_image_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=["RGB"], dtypes=[torch.float32]),
1620
1621
1622
1623
1624
        _NORMALIZE_MEANS_STDS,
    ):
        yield ArgsKwargs(image_loader, mean=mean, std=std)


1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
def reference_normalize_image_tensor(image, mean, std, inplace=False):
    mean = torch.tensor(mean).view(-1, 1, 1)
    std = torch.tensor(std).view(-1, 1, 1)

    sub = torch.Tensor.sub_ if inplace else torch.Tensor.sub
    return sub(image, mean).div_(std)


def reference_inputs_normalize_image_tensor():
    yield ArgsKwargs(
1635
        make_image_loader(size=(32, 32), color_space="RGB", extra_dims=[1]),
1636
1637
1638
1639
1640
        mean=[0.5, 0.5, 0.5],
        std=[1.0, 1.0, 1.0],
    )


1641
1642
1643
def sample_inputs_normalize_video():
    mean, std = _NORMALIZE_MEANS_STDS[0]
    for video_loader in make_video_loaders(
1644
        sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=["RGB"], num_frames=[3], dtypes=[torch.float32]
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
    ):
        yield ArgsKwargs(video_loader, mean=mean, std=std)


KERNEL_INFOS.extend(
    [
        KernelInfo(
            F.normalize_image_tensor,
            kernel_name="normalize_image_tensor",
            sample_inputs_fn=sample_inputs_normalize_image_tensor,
1655
1656
            reference_fn=reference_normalize_image_tensor,
            reference_inputs_fn=reference_inputs_normalize_image_tensor,
1657
1658
1659
1660
            test_marks=[
                xfail_jit_python_scalar_arg("mean"),
                xfail_jit_python_scalar_arg("std"),
            ],
1661
1662
1663
1664
1665
1666
        ),
        KernelInfo(
            F.normalize_video,
            sample_inputs_fn=sample_inputs_normalize_video,
        ),
    ]
1667
)
1668
1669


1670
def sample_inputs_convert_dtype_image_tensor():
1671
1672
1673
1674
1675
1676
1677
    for input_dtype, output_dtype in itertools.product(
        [torch.uint8, torch.int64, torch.float32, torch.float64], repeat=2
    ):
        if input_dtype.is_floating_point and output_dtype == torch.int64:
            # conversion cannot be performed safely
            continue

1678
1679
1680
        for image_loader in make_image_loaders(
            sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=["RGB"], dtypes=[input_dtype]
        ):
1681
1682
1683
            yield ArgsKwargs(image_loader, dtype=output_dtype)


1684
def reference_convert_dtype_image_tensor(image, dtype=torch.float):
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
    input_dtype = image.dtype
    output_dtype = dtype

    if output_dtype == input_dtype:
        return image

    def fn(value):
        if input_dtype.is_floating_point:
            if output_dtype.is_floating_point:
                return value
            else:
                return int(decimal.Decimal(value) * torch.iinfo(output_dtype).max)
        else:
            input_max_value = torch.iinfo(input_dtype).max

            if output_dtype.is_floating_point:
                return float(decimal.Decimal(value) / input_max_value)
            else:
                output_max_value = torch.iinfo(output_dtype).max

                if input_max_value > output_max_value:
                    factor = (input_max_value + 1) // (output_max_value + 1)
                    return value // factor
                else:
                    factor = (output_max_value + 1) // (input_max_value + 1)
                    return value * factor

    return torch.tensor(tree_map(fn, image.tolist()), dtype=dtype)


1715
def reference_inputs_convert_dtype_image_tensor():
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
    for input_dtype, output_dtype in itertools.product(
        [
            torch.uint8,
            torch.int16,
            torch.int32,
            torch.int64,
            torch.float16,
            torch.float32,
            torch.float64,
            torch.bfloat16,
        ],
        repeat=2,
    ):
        if (input_dtype == torch.float32 and output_dtype in {torch.int32, torch.int64}) or (
            input_dtype == torch.float64 and output_dtype == torch.int64
        ):
            continue

        if input_dtype.is_floating_point:
            data = [0.0, 0.5, 1.0]
        else:
            max_value = torch.iinfo(input_dtype).max
            data = [0, max_value // 2, max_value]
        image = torch.tensor(data, dtype=input_dtype)

        yield ArgsKwargs(image, dtype=output_dtype)


1744
def sample_inputs_convert_dtype_video():
1745
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[3]):
1746
1747
1748
        yield ArgsKwargs(video_loader)


1749
1750
1751
1752
1753
skip_dtype_consistency = TestMark(
    ("TestKernels", "test_dtype_and_device_consistency"),
    pytest.mark.skip(reason="`convert_dtype_*` kernels convert the dtype by design"),
    condition=lambda args_kwargs: args_kwargs.args[0].dtype != args_kwargs.kwargs.get("dtype", torch.float32),
)
1754

1755
1756
1757
KERNEL_INFOS.extend(
    [
        KernelInfo(
1758
1759
1760
1761
            F.convert_dtype_image_tensor,
            sample_inputs_fn=sample_inputs_convert_dtype_image_tensor,
            reference_fn=reference_convert_dtype_image_tensor,
            reference_inputs_fn=reference_inputs_convert_dtype_image_tensor,
1762
            test_marks=[
1763
                skip_dtype_consistency,
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
                TestMark(
                    ("TestKernels", "test_against_reference"),
                    pytest.mark.xfail(reason="Conversion overflows"),
                    condition=lambda args_kwargs: (
                        args_kwargs.args[0].dtype in {torch.float16, torch.bfloat16}
                        and not args_kwargs.kwargs["dtype"].is_floating_point
                    )
                    or (
                        args_kwargs.args[0].dtype in {torch.int32, torch.int64}
                        and args_kwargs.kwargs["dtype"] == torch.float16
                    ),
                ),
            ],
        ),
1778
1779
1780
        KernelInfo(
            F.convert_dtype_video,
            sample_inputs_fn=sample_inputs_convert_dtype_video,
1781
1782
1783
            test_marks=[
                skip_dtype_consistency,
            ],
1784
        ),
1785
1786
    ]
)
1787
1788
1789


def sample_inputs_uniform_temporal_subsample_video():
1790
    for video_loader in make_video_loaders(sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], num_frames=[4]):
1791
        yield ArgsKwargs(video_loader, num_samples=2)
1792
1793


1794
def reference_uniform_temporal_subsample_video(x, num_samples):
1795
1796
    # Copy-pasted from
    # https://github.com/facebookresearch/pytorchvideo/blob/c8d23d8b7e597586a9e2d18f6ed31ad8aa379a7a/pytorchvideo/transforms/functional.py#L19
1797
    t = x.shape[-4]
1798
1799
1800
1801
    assert num_samples > 0 and t > 0
    # Sample by nearest neighbor interpolation if num_samples > t.
    indices = torch.linspace(0, t - 1, num_samples)
    indices = torch.clamp(indices, 0, t - 1).long()
1802
    return torch.index_select(x, -4, indices)
1803
1804
1805


def reference_inputs_uniform_temporal_subsample_video():
1806
1807
1808
    for video_loader in make_video_loaders(
        sizes=[DEFAULT_PORTRAIT_SPATIAL_SIZE], color_spaces=["RGB"], num_frames=[10]
    ):
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
        for num_samples in range(1, video_loader.shape[-4] + 1):
            yield ArgsKwargs(video_loader, num_samples)


KERNEL_INFOS.append(
    KernelInfo(
        F.uniform_temporal_subsample_video,
        sample_inputs_fn=sample_inputs_uniform_temporal_subsample_video,
        reference_fn=reference_uniform_temporal_subsample_video,
        reference_inputs_fn=reference_inputs_uniform_temporal_subsample_video,
    )
)