generalized_rcnn.py 4.42 KB
Newer Older
1
2
3
4
5
6
"""
Implements the Generalized R-CNN framework
"""

from collections import OrderedDict
import torch
7
from torch import nn, Tensor
eellison's avatar
eellison committed
8
import warnings
9
from typing import Tuple, List, Dict, Optional, Union
10
11
12
13
14
15


class GeneralizedRCNN(nn.Module):
    """
    Main class for Generalized R-CNN.

16
    Args:
17
18
        backbone (nn.Module):
        rpn (nn.Module):
19
        roi_heads (nn.Module): takes the features + the proposals from the RPN and computes
20
21
22
23
24
25
26
27
28
29
30
            detections / masks from it.
        transform (nn.Module): performs the data transformation from the inputs to feed into
            the model
    """

    def __init__(self, backbone, rpn, roi_heads, transform):
        super(GeneralizedRCNN, self).__init__()
        self.transform = transform
        self.backbone = backbone
        self.rpn = rpn
        self.roi_heads = roi_heads
31
32
        # used only on torchscript mode
        self._has_warned = False
33

eellison's avatar
eellison committed
34
35
    @torch.jit.unused
    def eager_outputs(self, losses, detections):
36
        # type: (Dict[str, Tensor], List[Dict[str, Tensor]]) -> Union[Dict[str, Tensor], List[Dict[str, Tensor]]]
eellison's avatar
eellison committed
37
38
39
40
41
        if self.training:
            return losses

        return detections

42
    def forward(self, images, targets=None):
43
        # type: (List[Tensor], Optional[List[Dict[str, Tensor]]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]
44
        """
45
        Args:
46
47
48
49
50
51
52
53
54
55
56
57
            images (list[Tensor]): images to be processed
            targets (list[Dict[Tensor]]): ground-truth boxes present in the image (optional)

        Returns:
            result (list[BoxList] or dict[Tensor]): the output from the model.
                During training, it returns a dict[Tensor] which contains the losses.
                During testing, it returns list[BoxList] contains additional fields
                like `scores`, `labels` and `mask` (for Mask R-CNN models).

        """
        if self.training and targets is None:
            raise ValueError("In training mode, targets should be passed")
58
59
60
61
62
63
64
65
66
67
68
69
70
        if self.training:
            assert targets is not None
            for target in targets:
                boxes = target["boxes"]
                if isinstance(boxes, torch.Tensor):
                    if len(boxes.shape) != 2 or boxes.shape[-1] != 4:
                        raise ValueError("Expected target boxes to be a tensor"
                                         "of shape [N, 4], got {:}.".format(
                                             boxes.shape))
                else:
                    raise ValueError("Expected target boxes to be of type "
                                     "Tensor, got {:}.".format(type(boxes)))

71
        original_image_sizes: List[Tuple[int, int]] = []
eellison's avatar
eellison committed
72
73
74
75
76
        for img in images:
            val = img.shape[-2:]
            assert len(val) == 2
            original_image_sizes.append((val[0], val[1]))

77
        images, targets = self.transform(images, targets)
78
79
80
81
82
83
84
85

        # Check for degenerate boxes
        # TODO: Move this to a function
        if targets is not None:
            for target_idx, target in enumerate(targets):
                boxes = target["boxes"]
                degenerate_boxes = boxes[:, 2:] <= boxes[:, :2]
                if degenerate_boxes.any():
86
                    # print the first degenerate box
87
                    bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0]
88
89
                    degen_bb: List[float] = boxes[bb_idx].tolist()
                    raise ValueError("All bounding boxes should have positive height and width."
90
                                     " Found invalid box {} for target at index {}."
91
92
                                     .format(degen_bb, target_idx))

93
94
        features = self.backbone(images.tensors)
        if isinstance(features, torch.Tensor):
95
            features = OrderedDict([('0', features)])
96
97
98
99
100
101
102
103
        proposals, proposal_losses = self.rpn(images, features, targets)
        detections, detector_losses = self.roi_heads(features, proposals, images.image_sizes, targets)
        detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes)

        losses = {}
        losses.update(detector_losses)
        losses.update(proposal_losses)

eellison's avatar
eellison committed
104
        if torch.jit.is_scripting():
105
106
107
            if not self._has_warned:
                warnings.warn("RCNN always returns a (Losses, Detections) tuple in scripting")
                self._has_warned = True
108
            return losses, detections
eellison's avatar
eellison committed
109
110
        else:
            return self.eager_outputs(losses, detections)