test_models_detection_utils.py 3.55 KB
Newer Older
1
import copy
2
3
import torch
from torchvision.models.detection import _utils
4
from torchvision.models.detection.transform import GeneralizedRCNNTransform
5
import unittest
6
from torchvision.models.detection import backbone_utils
7
from _assert_utils import assert_equal
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23


class Tester(unittest.TestCase):
    def test_balanced_positive_negative_sampler(self):
        sampler = _utils.BalancedPositiveNegativeSampler(4, 0.25)
        # keep all 6 negatives first, then add 3 positives, last two are ignore
        matched_idxs = [torch.tensor([0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1])]
        pos, neg = sampler(matched_idxs)
        # we know the number of elements that should be sampled for the positive (1)
        # and the negative (3), and their location. Let's make sure that they are
        # there
        self.assertEqual(pos[0].sum(), 1)
        self.assertEqual(pos[0][6:9].sum(), 1)
        self.assertEqual(neg[0].sum(), 3)
        self.assertEqual(neg[0][0:6].sum(), 3)

24
    def test_resnet_fpn_backbone_frozen_layers(self):
25
        # we know how many initial layers and parameters of the network should
26
        # be frozen for each trainable_backbone_layers parameter value
27
28
29
30
        # i.e all 53 params are frozen if trainable_backbone_layers=0
        # ad first 24 params are frozen if trainable_backbone_layers=2
        expected_frozen_params = {0: 53, 1: 43, 2: 24, 3: 11, 4: 1, 5: 0}
        for train_layers, exp_froz_params in expected_frozen_params.items():
31
32
            model = backbone_utils.resnet_fpn_backbone(
                'resnet50', pretrained=False, trainable_layers=train_layers)
33
34
35
36
37
            # boolean list that is true if the param at that index is frozen
            is_frozen = [not parameter.requires_grad for _, parameter in model.named_parameters()]
            # check that expected initial number of layers are frozen
            self.assertTrue(all(is_frozen[:exp_froz_params]))

38
39
    def test_validate_resnet_inputs_detection(self):
        # default number of backbone layers to train
40
41
        ret = backbone_utils._validate_trainable_layers(
            pretrained=True, trainable_backbone_layers=None, max_value=5, default_value=3)
42
43
44
        self.assertEqual(ret, 3)
        # can't go beyond 5
        with self.assertRaises(AssertionError):
45
46
            ret = backbone_utils._validate_trainable_layers(
                pretrained=True, trainable_backbone_layers=6, max_value=5, default_value=3)
47
48
        # if not pretrained, should use all trainable layers and warn
        with self.assertWarns(UserWarning):
49
50
            ret = backbone_utils._validate_trainable_layers(
                pretrained=False, trainable_backbone_layers=0, max_value=5, default_value=3)
51
        self.assertEqual(ret, 5)
52

53
54
55
56
57
58
    def test_transform_copy_targets(self):
        transform = GeneralizedRCNNTransform(300, 500, torch.zeros(3), torch.ones(3))
        image = [torch.rand(3, 200, 300), torch.rand(3, 200, 200)]
        targets = [{'boxes': torch.rand(3, 4)}, {'boxes': torch.rand(2, 4)}]
        targets_copy = copy.deepcopy(targets)
        out = transform(image, targets)  # noqa: F841
59
60
        assert_equal(targets[0]['boxes'], targets_copy[0]['boxes'])
        assert_equal(targets[1]['boxes'], targets_copy[1]['boxes'])
61

62
63
64
65
66
67
68
    def test_not_float_normalize(self):
        transform = GeneralizedRCNNTransform(300, 500, torch.zeros(3), torch.ones(3))
        image = [torch.randint(0, 255, (3, 200, 300), dtype=torch.uint8)]
        targets = [{'boxes': torch.rand(3, 4)}]
        with self.assertRaises(TypeError):
            out = transform(image, targets)  # noqa: F841

69
70
71

if __name__ == '__main__':
    unittest.main()