video.py 15.3 KB
Newer Older
1
import gc
2
import math
3
import os
4
import re
5
import warnings
6
from fractions import Fraction
7
from typing import Any, Dict, List, Optional, Tuple, Union
8

9
10
import numpy as np
import torch
Francisco Massa's avatar
Francisco Massa committed
11

Kai Zhang's avatar
Kai Zhang committed
12
from ..utils import _log_api_usage_once
13
from . import _video_opt
Francisco Massa's avatar
Francisco Massa committed
14

15
16
try:
    import av
17

18
    av.logging.set_level(av.logging.ERROR)
19
20
21
    if not hasattr(av.video.frame.VideoFrame, "pict_type"):
        av = ImportError(
            """\
22
23
24
25
26
Your version of PyAV is too old for the necessary video operations in torchvision.
If you are on Python 3.5, you will have to build from source (the conda-forge
packages are not up-to-date).  See
https://github.com/mikeboers/PyAV#installation for instructions on how to
install PyAV on your system.
27
28
"""
        )
29
except ImportError:
30
31
    av = ImportError(
        """\
32
33
34
PyAV is not installed, and is necessary for the video operations in torchvision.
See https://github.com/mikeboers/PyAV#installation for instructions on how to
install PyAV on your system.
35
36
"""
    )
37
38


39
def _check_av_available() -> None:
40
41
42
43
    if isinstance(av, Exception):
        raise av


44
def _av_available() -> bool:
45
46
47
    return not isinstance(av, Exception)


48
49
# PyAV has some reference cycles
_CALLED_TIMES = 0
50
_GC_COLLECTION_INTERVAL = 10
51
52


53
54
55
56
57
58
def write_video(
    filename: str,
    video_array: torch.Tensor,
    fps: float,
    video_codec: str = "libx264",
    options: Optional[Dict[str, Any]] = None,
59
60
61
62
    audio_array: Optional[torch.Tensor] = None,
    audio_fps: Optional[float] = None,
    audio_codec: Optional[str] = None,
    audio_options: Optional[Dict[str, Any]] = None,
63
) -> None:
64
65
66
    """
    Writes a 4d tensor in [T, H, W, C] format in a video file

67
68
69
70
71
72
73
74
75
76
77
78
    Args:
        filename (str): path where the video will be saved
        video_array (Tensor[T, H, W, C]): tensor containing the individual frames,
            as a uint8 tensor in [T, H, W, C] format
        fps (Number): video frames per second
        video_codec (str): the name of the video codec, i.e. "libx264", "h264", etc.
        options (Dict): dictionary containing options to be passed into the PyAV video stream
        audio_array (Tensor[C, N]): tensor containing the audio, where C is the number of channels
            and N is the number of samples
        audio_fps (Number): audio sample rate, typically 44100 or 48000
        audio_codec (str): the name of the audio codec, i.e. "mp3", "aac", etc.
        audio_options (Dict): dictionary containing options to be passed into the PyAV audio stream
79
    """
Kai Zhang's avatar
Kai Zhang committed
80
81
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(write_video)
82
83
84
    _check_av_available()
    video_array = torch.as_tensor(video_array, dtype=torch.uint8).numpy()

85
86
87
88
89
    # PyAV does not support floating point numbers with decimal point
    # and will throw OverflowException in case this is not the case
    if isinstance(fps, float):
        fps = np.round(fps)

90
91
92
93
94
95
96
    with av.open(filename, mode="w") as container:
        stream = container.add_stream(video_codec, rate=fps)
        stream.width = video_array.shape[2]
        stream.height = video_array.shape[1]
        stream.pix_fmt = "yuv420p" if video_codec != "libx264rgb" else "rgb24"
        stream.options = options or {}

97
98
        if audio_array is not None:
            audio_format_dtypes = {
99
100
101
102
103
104
105
106
107
108
                "dbl": "<f8",
                "dblp": "<f8",
                "flt": "<f4",
                "fltp": "<f4",
                "s16": "<i2",
                "s16p": "<i2",
                "s32": "<i4",
                "s32p": "<i4",
                "u8": "u1",
                "u8p": "u1",
109
110
111
112
113
114
115
116
117
118
119
            }
            a_stream = container.add_stream(audio_codec, rate=audio_fps)
            a_stream.options = audio_options or {}

            num_channels = audio_array.shape[0]
            audio_layout = "stereo" if num_channels > 1 else "mono"
            audio_sample_fmt = container.streams.audio[0].format.name

            format_dtype = np.dtype(audio_format_dtypes[audio_sample_fmt])
            audio_array = torch.as_tensor(audio_array).numpy().astype(format_dtype)

120
            frame = av.AudioFrame.from_ndarray(audio_array, format=audio_sample_fmt, layout=audio_layout)
121
122
123
124
125
126
127
128
129

            frame.sample_rate = audio_fps

            for packet in a_stream.encode(frame):
                container.mux(packet)

            for packet in a_stream.encode():
                container.mux(packet)

130
131
132
133
134
135
136
137
        for img in video_array:
            frame = av.VideoFrame.from_ndarray(img, format="rgb24")
            frame.pict_type = "NONE"
            for packet in stream.encode(frame):
                container.mux(packet)

        # Flush stream
        for packet in stream.encode():
138
139
140
            container.mux(packet)


141
def _read_from_stream(
142
143
144
145
146
147
148
    container: "av.container.Container",
    start_offset: float,
    end_offset: float,
    pts_unit: str,
    stream: "av.stream.Stream",
    stream_name: Dict[str, Optional[Union[int, Tuple[int, ...], List[int]]]],
) -> List["av.frame.Frame"]:
149
150
151
152
153
    global _CALLED_TIMES, _GC_COLLECTION_INTERVAL
    _CALLED_TIMES += 1
    if _CALLED_TIMES % _GC_COLLECTION_INTERVAL == _GC_COLLECTION_INTERVAL - 1:
        gc.collect()

154
    if pts_unit == "sec":
155
156
        # TODO: we should change all of this from ground up to simply take
        # sec and convert to MS in C++
157
158
159
160
        start_offset = int(math.floor(start_offset * (1 / stream.time_base)))
        if end_offset != float("inf"):
            end_offset = int(math.ceil(end_offset * (1 / stream.time_base)))
    else:
161
        warnings.warn("The pts_unit 'pts' gives wrong results. Please use pts_unit 'sec'.")
162

163
    frames = {}
164
    should_buffer = True
165
166
    max_buffer_size = 5
    if stream.type == "video":
167
        # DivX-style packed B-frames can have out-of-order pts (2 frames in a single pkt)
168
169
        # so need to buffer some extra frames to sort everything
        # properly
170
171
172
173
174
175
176
        extradata = stream.codec_context.extradata
        # overly complicated way of finding if `divx_packed` is set, following
        # https://github.com/FFmpeg/FFmpeg/commit/d5a21172283572af587b3d939eba0091484d3263
        if extradata and b"DivX" in extradata:
            # can't use regex directly because of some weird characters sometimes...
            pos = extradata.find(b"DivX")
            d = extradata[pos:]
177
            o = re.search(rb"DivX(\d+)Build(\d+)(\w)", d)
178
            if o is None:
179
                o = re.search(rb"DivX(\d+)b(\d+)(\w)", d)
180
181
            if o is not None:
                should_buffer = o.group(3) == b"p"
182
    seek_offset = start_offset
183
184
    # some files don't seek to the right location, so better be safe here
    seek_offset = max(seek_offset - 1, 0)
185
186
187
188
    if should_buffer:
        # FIXME this is kind of a hack, but we will jump to the previous keyframe
        # so this will be safe
        seek_offset = max(seek_offset - max_buffer_size, 0)
189
190
191
192
    try:
        # TODO check if stream needs to always be the video stream here or not
        container.seek(seek_offset, any_frame=False, backward=True, stream=stream)
    except av.AVError:
193
194
        # TODO add some warnings in this case
        # print("Corrupted file?", container.name)
195
        return []
196
    buffer_count = 0
197
    try:
198
        for _idx, frame in enumerate(container.decode(**stream_name)):
199
200
201
202
203
204
205
206
207
            frames[frame.pts] = frame
            if frame.pts >= end_offset:
                if should_buffer and buffer_count < max_buffer_size:
                    buffer_count += 1
                    continue
                break
    except av.AVError:
        # TODO add a warning
        pass
208
    # ensure that the results are sorted wrt the pts
209
    result = [frames[i] for i in sorted(frames) if start_offset <= frames[i].pts <= end_offset]
210
    if len(frames) > 0 and start_offset > 0 and start_offset not in frames:
211
212
213
        # if there is no frame that exactly matches the pts of start_offset
        # add the last frame smaller than start_offset, to guarantee that
        # we will have all the necessary data. This is most useful for audio
214
215
216
217
        preceding_frames = [i for i in frames if i < start_offset]
        if len(preceding_frames) > 0:
            first_frame_pts = max(preceding_frames)
            result.insert(0, frames[first_frame_pts])
218
    return result
219
220


221
222
223
def _align_audio_frames(
    aframes: torch.Tensor, audio_frames: List["av.frame.Frame"], ref_start: int, ref_end: float
) -> torch.Tensor:
224
225
226
227
228
229
230
231
232
233
234
235
    start, end = audio_frames[0].pts, audio_frames[-1].pts
    total_aframes = aframes.shape[1]
    step_per_aframe = (end - start + 1) / total_aframes
    s_idx = 0
    e_idx = total_aframes
    if start < ref_start:
        s_idx = int((ref_start - start) / step_per_aframe)
    if end > ref_end:
        e_idx = int((ref_end - end) / step_per_aframe)
    return aframes[:, s_idx:e_idx]


236
def read_video(
237
238
239
240
    filename: str,
    start_pts: Union[float, Fraction] = 0,
    end_pts: Optional[Union[float, Fraction]] = None,
    pts_unit: str = "pts",
241
    output_format: str = "THWC",
242
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]:
243
244
245
246
    """
    Reads a video from a file, returning both the video frames as well as
    the audio frames

247
248
249
250
251
252
253
254
    Args:
        filename (str): path to the video file
        start_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
            The start presentation time of the video
        end_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
            The end presentation time
        pts_unit (str, optional): unit in which start_pts and end_pts values will be interpreted,
            either 'pts' or 'sec'. Defaults to 'pts'.
255
        output_format (str, optional): The format of the output video tensors. Can be either "THWC" (default) or "TCHW".
256
257

    Returns:
258
        vframes (Tensor[T, H, W, C] or Tensor[T, C, H, W]): the `T` video frames
259
260
        aframes (Tensor[K, L]): the audio frames, where `K` is the number of channels and `L` is the number of points
        info (Dict): metadata for the video and audio. Can contain the fields video_fps (float) and audio_fps (int)
261
    """
Kai Zhang's avatar
Kai Zhang committed
262
263
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(read_video)
Francisco Massa's avatar
Francisco Massa committed
264

265
266
267
268
    output_format = output_format.upper()
    if output_format not in ("THWC", "TCHW"):
        raise ValueError(f"output_format should be either 'THWC' or 'TCHW', got {output_format}.")

Francisco Massa's avatar
Francisco Massa committed
269
    from torchvision import get_video_backend
270

271
    if not os.path.exists(filename):
272
        raise RuntimeError(f"File not found: {filename}")
273

Francisco Massa's avatar
Francisco Massa committed
274
    if get_video_backend() != "pyav":
275
        vframes, aframes, info = _video_opt._read_video(filename, start_pts, end_pts, pts_unit)
276
    else:
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        _check_av_available()

        if end_pts is None:
            end_pts = float("inf")

        if end_pts < start_pts:
            raise ValueError(
                f"end_pts should be larger than start_pts, got start_pts={start_pts} and end_pts={end_pts}"
            )

        info = {}
        video_frames = []
        audio_frames = []
        audio_timebase = _video_opt.default_timebase

        try:
            with av.open(filename, metadata_errors="ignore") as container:
                if container.streams.audio:
                    audio_timebase = container.streams.audio[0].time_base
                if container.streams.video:
                    video_frames = _read_from_stream(
                        container,
                        start_pts,
                        end_pts,
                        pts_unit,
                        container.streams.video[0],
                        {"video": 0},
                    )
                    video_fps = container.streams.video[0].average_rate
                    # guard against potentially corrupted files
                    if video_fps is not None:
                        info["video_fps"] = float(video_fps)

                if container.streams.audio:
                    audio_frames = _read_from_stream(
                        container,
                        start_pts,
                        end_pts,
                        pts_unit,
                        container.streams.audio[0],
                        {"audio": 0},
                    )
                    info["audio_fps"] = container.streams.audio[0].rate

        except av.AVError:
            # TODO raise a warning?
            pass

        vframes_list = [frame.to_rgb().to_ndarray() for frame in video_frames]
        aframes_list = [frame.to_ndarray() for frame in audio_frames]

        if vframes_list:
            vframes = torch.as_tensor(np.stack(vframes_list))
        else:
            vframes = torch.empty((0, 1, 1, 3), dtype=torch.uint8)

        if aframes_list:
            aframes = np.concatenate(aframes_list, 1)
            aframes = torch.as_tensor(aframes)
            if pts_unit == "sec":
                start_pts = int(math.floor(start_pts * (1 / audio_timebase)))
                if end_pts != float("inf"):
                    end_pts = int(math.ceil(end_pts * (1 / audio_timebase)))
            aframes = _align_audio_frames(aframes, audio_frames, start_pts, end_pts)
        else:
            aframes = torch.empty((1, 0), dtype=torch.float32)
343

344
345
346
347
    if output_format == "TCHW":
        # [T,H,W,C] --> [T,C,H,W]
        vframes = vframes.permute(0, 3, 1, 2)

348
349
350
    return vframes, aframes, info


351
def _can_read_timestamps_from_packets(container: "av.container.Container") -> bool:
352
353
354
355
356
357
358
359
    extradata = container.streams[0].codec_context.extradata
    if extradata is None:
        return False
    if b"Lavc" in extradata:
        return True
    return False


360
def _decode_video_timestamps(container: "av.container.Container") -> List[int]:
361
362
363
364
365
366
367
    if _can_read_timestamps_from_packets(container):
        # fast path
        return [x.pts for x in container.demux(video=0) if x.pts is not None]
    else:
        return [x.pts for x in container.decode(video=0) if x.pts is not None]


368
def read_video_timestamps(filename: str, pts_unit: str = "pts") -> Tuple[List[int], Optional[float]]:
369
370
371
372
373
    """
    List the video frames timestamps.

    Note that the function decodes the whole video frame-by-frame.

374
375
376
377
378
379
380
381
382
    Args:
        filename (str): path to the video file
        pts_unit (str, optional): unit in which timestamp values will be returned
            either 'pts' or 'sec'. Defaults to 'pts'.

    Returns:
        pts (List[int] if pts_unit = 'pts', List[Fraction] if pts_unit = 'sec'):
            presentation timestamps for each one of the frames in the video.
        video_fps (float, optional): the frame rate for the video
383
384

    """
Kai Zhang's avatar
Kai Zhang committed
385
386
    if not torch.jit.is_scripting() and not torch.jit.is_tracing():
        _log_api_usage_once(read_video_timestamps)
Francisco Massa's avatar
Francisco Massa committed
387
    from torchvision import get_video_backend
388

Francisco Massa's avatar
Francisco Massa committed
389
390
391
    if get_video_backend() != "pyav":
        return _video_opt._read_video_timestamps(filename, pts_unit)

392
    _check_av_available()
393

394
    video_fps = None
395
    pts = []
396
397

    try:
398
399
400
401
402
403
404
405
406
        with av.open(filename, metadata_errors="ignore") as container:
            if container.streams.video:
                video_stream = container.streams.video[0]
                video_time_base = video_stream.time_base
                try:
                    pts = _decode_video_timestamps(container)
                except av.AVError:
                    warnings.warn(f"Failed decoding frames for file {filename}")
                video_fps = float(video_stream.average_rate)
407
408
409
    except av.AVError as e:
        msg = f"Failed to open container for {filename}; Caught error: {e}"
        warnings.warn(msg, RuntimeWarning)
410

411
    pts.sort()
412

413
    if pts_unit == "sec":
414
415
416
        pts = [x * video_time_base for x in pts]

    return pts, video_fps