"vscode:/vscode.git/clone" did not exist on "00991723276a088181ec5e4097ae724e64f60eb0"
shufflenetv2.py 16.5 KB
Newer Older
limm's avatar
limm committed
1
2
3
from functools import partial
from typing import Any, List, Optional, Union

4
5
import torch
import torch.nn as nn
limm's avatar
limm committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
from torch import Tensor
from torchvision.models import shufflenetv2

from ...transforms._presets import ImageClassification
from .._api import register_model, Weights, WeightsEnum
from .._meta import _IMAGENET_CATEGORIES
from .._utils import _ovewrite_named_param, handle_legacy_interface
from ..shufflenetv2 import (
    ShuffleNet_V2_X0_5_Weights,
    ShuffleNet_V2_X1_0_Weights,
    ShuffleNet_V2_X1_5_Weights,
    ShuffleNet_V2_X2_0_Weights,
)
from .utils import _fuse_modules, _replace_relu, quantize_model
20
21
22


__all__ = [
limm's avatar
limm committed
23
24
25
26
27
28
29
30
31
    "QuantizableShuffleNetV2",
    "ShuffleNet_V2_X0_5_QuantizedWeights",
    "ShuffleNet_V2_X1_0_QuantizedWeights",
    "ShuffleNet_V2_X1_5_QuantizedWeights",
    "ShuffleNet_V2_X2_0_QuantizedWeights",
    "shufflenet_v2_x0_5",
    "shufflenet_v2_x1_0",
    "shufflenet_v2_x1_5",
    "shufflenet_v2_x2_0",
32
33
34
35
]


class QuantizableInvertedResidual(shufflenetv2.InvertedResidual):
limm's avatar
limm committed
36
37
    def __init__(self, *args: Any, **kwargs: Any) -> None:
        super().__init__(*args, **kwargs)
38
39
        self.cat = nn.quantized.FloatFunctional()

limm's avatar
limm committed
40
    def forward(self, x: Tensor) -> Tensor:
41
42
        if self.stride == 1:
            x1, x2 = x.chunk(2, dim=1)
limm's avatar
limm committed
43
            out = self.cat.cat([x1, self.branch2(x2)], dim=1)
44
        else:
limm's avatar
limm committed
45
            out = self.cat.cat([self.branch1(x), self.branch2(x)], dim=1)
46
47
48
49
50
51
52

        out = shufflenetv2.channel_shuffle(out, 2)

        return out


class QuantizableShuffleNetV2(shufflenetv2.ShuffleNetV2):
limm's avatar
limm committed
53
54
55
56
57
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
        super().__init__(*args, inverted_residual=QuantizableInvertedResidual, **kwargs)  # type: ignore[misc]
        self.quant = torch.ao.quantization.QuantStub()
        self.dequant = torch.ao.quantization.DeQuantStub()
58

limm's avatar
limm committed
59
    def forward(self, x: Tensor) -> Tensor:
60
        x = self.quant(x)
61
        x = self._forward_impl(x)
62
63
64
        x = self.dequant(x)
        return x

limm's avatar
limm committed
65
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
66
67
68
        r"""Fuse conv/bn/relu modules in shufflenetv2 model

        Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization.
limm's avatar
limm committed
69
        Model is modified in place.
70

limm's avatar
limm committed
71
72
73
74
        .. note::
            Note that this operation does not change numerics
            and the model after modification is in floating point
        """
75
        for name, m in self._modules.items():
limm's avatar
limm committed
76
77
            if name in ["conv1", "conv5"] and m is not None:
                _fuse_modules(m, [["0", "1", "2"]], is_qat, inplace=True)
78
        for m in self.modules():
limm's avatar
limm committed
79
            if type(m) is QuantizableInvertedResidual:
80
                if len(m.branch1._modules.items()) > 0:
limm's avatar
limm committed
81
82
                    _fuse_modules(m.branch1, [["0", "1"], ["2", "3", "4"]], is_qat, inplace=True)
                _fuse_modules(
83
84
                    m.branch2,
                    [["0", "1", "2"], ["3", "4"], ["5", "6", "7"]],
limm's avatar
limm committed
85
                    is_qat,
86
87
88
89
                    inplace=True,
                )


limm's avatar
limm committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
def _shufflenetv2(
    stages_repeats: List[int],
    stages_out_channels: List[int],
    *,
    weights: Optional[WeightsEnum],
    progress: bool,
    quantize: bool,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
        if "backend" in weights.meta:
            _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
    backend = kwargs.pop("backend", "fbgemm")

    model = QuantizableShuffleNetV2(stages_repeats, stages_out_channels, **kwargs)
106
107
108
109
    _replace_relu(model)
    if quantize:
        quantize_model(model, backend)

limm's avatar
limm committed
110
111
    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
112
113
114
115

    return model


limm's avatar
limm committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
_COMMON_META = {
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
    "backend": "fbgemm",
    "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
    "_docs": """
        These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized
        weights listed below.
    """,
}


class ShuffleNet_V2_X0_5_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x0.5_fbgemm-00845098.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 1366792,
            "unquantized": ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1,
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 57.972,
                    "acc@5": 79.780,
                }
            },
            "_ops": 0.04,
            "_file_size": 1.501,
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


class ShuffleNet_V2_X1_0_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_fbgemm-1e62bb32.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 2278604,
            "unquantized": ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1,
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 68.360,
                    "acc@5": 87.582,
                }
            },
            "_ops": 0.145,
            "_file_size": 2.334,
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


class ShuffleNet_V2_X1_5_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_5_fbgemm-d7401f05.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/pytorch/vision/pull/5906",
            "num_params": 3503624,
            "unquantized": ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1,
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 72.052,
                    "acc@5": 90.700,
                }
            },
            "_ops": 0.296,
            "_file_size": 3.672,
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


class ShuffleNet_V2_X2_0_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x2_0_fbgemm-5cac526c.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/pytorch/vision/pull/5906",
            "num_params": 7393996,
            "unquantized": ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1,
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 75.354,
                    "acc@5": 92.488,
                }
            },
            "_ops": 0.583,
            "_file_size": 7.467,
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


@register_model(name="quantized_shufflenet_v2_x0_5")
@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: ShuffleNet_V2_X0_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1,
    )
)
def shufflenet_v2_x0_5(
    *,
    weights: Optional[Union[ShuffleNet_V2_X0_5_QuantizedWeights, ShuffleNet_V2_X0_5_Weights]] = None,
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
230
231
    """
    Constructs a ShuffleNetV2 with 0.5x output channels, as described in
limm's avatar
limm committed
232
233
234
235
236
237
238
    `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    <https://arxiv.org/abs/1807.11164>`__.

    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.
239
240

    Args:
limm's avatar
limm committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
        weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr.
            Default is True.
        quantize (bool, optional): If True, return a quantized version of the model.
            Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights
        :members:

    .. autoclass:: torchvision.models.ShuffleNet_V2_X0_5_Weights
        :members:
        :noindex:
261
    """
limm's avatar
limm committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    weights = (ShuffleNet_V2_X0_5_QuantizedWeights if quantize else ShuffleNet_V2_X0_5_Weights).verify(weights)
    return _shufflenetv2(
        [4, 8, 4], [24, 48, 96, 192, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
    )


@register_model(name="quantized_shufflenet_v2_x1_0")
@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: ShuffleNet_V2_X1_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1,
    )
)
def shufflenet_v2_x1_0(
    *,
    weights: Optional[Union[ShuffleNet_V2_X1_0_QuantizedWeights, ShuffleNet_V2_X1_0_Weights]] = None,
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
284
285
    """
    Constructs a ShuffleNetV2 with 1.0x output channels, as described in
limm's avatar
limm committed
286
287
288
289
290
291
292
    `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    <https://arxiv.org/abs/1807.11164>`__.

    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.
293
294

    Args:
limm's avatar
limm committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr.
            Default is True.
        quantize (bool, optional): If True, return a quantized version of the model.
            Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights
        :members:

    .. autoclass:: torchvision.models.ShuffleNet_V2_X1_0_Weights
        :members:
        :noindex:
315
    """
limm's avatar
limm committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    weights = (ShuffleNet_V2_X1_0_QuantizedWeights if quantize else ShuffleNet_V2_X1_0_Weights).verify(weights)
    return _shufflenetv2(
        [4, 8, 4], [24, 116, 232, 464, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
    )


@register_model(name="quantized_shufflenet_v2_x1_5")
@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: ShuffleNet_V2_X1_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1,
    )
)
def shufflenet_v2_x1_5(
    *,
    weights: Optional[Union[ShuffleNet_V2_X1_5_QuantizedWeights, ShuffleNet_V2_X1_5_Weights]] = None,
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
338
339
    """
    Constructs a ShuffleNetV2 with 1.5x output channels, as described in
limm's avatar
limm committed
340
341
342
343
344
345
346
    `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    <https://arxiv.org/abs/1807.11164>`__.

    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.
347
348

    Args:
limm's avatar
limm committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr.
            Default is True.
        quantize (bool, optional): If True, return a quantized version of the model.
            Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights
        :members:

    .. autoclass:: torchvision.models.ShuffleNet_V2_X1_5_Weights
        :members:
        :noindex:
369
    """
limm's avatar
limm committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    weights = (ShuffleNet_V2_X1_5_QuantizedWeights if quantize else ShuffleNet_V2_X1_5_Weights).verify(weights)
    return _shufflenetv2(
        [4, 8, 4], [24, 176, 352, 704, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
    )


@register_model(name="quantized_shufflenet_v2_x2_0")
@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: ShuffleNet_V2_X2_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1,
    )
)
def shufflenet_v2_x2_0(
    *,
    weights: Optional[Union[ShuffleNet_V2_X2_0_QuantizedWeights, ShuffleNet_V2_X2_0_Weights]] = None,
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
392
393
    """
    Constructs a ShuffleNetV2 with 2.0x output channels, as described in
limm's avatar
limm committed
394
395
396
397
398
399
400
    `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    <https://arxiv.org/abs/1807.11164>`__.

    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.
401
402

    Args:
limm's avatar
limm committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
        weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr.
            Default is True.
        quantize (bool, optional): If True, return a quantized version of the model.
            Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights
        :members:

    .. autoclass:: torchvision.models.ShuffleNet_V2_X2_0_Weights
        :members:
        :noindex:
423
    """
limm's avatar
limm committed
424
425
426
427
    weights = (ShuffleNet_V2_X2_0_QuantizedWeights if quantize else ShuffleNet_V2_X2_0_Weights).verify(weights)
    return _shufflenetv2(
        [4, 8, 4], [24, 244, 488, 976, 2048], weights=weights, progress=progress, quantize=quantize, **kwargs
    )