mobilenetv3.py 9.01 KB
Newer Older
limm's avatar
limm committed
1
2
3
from functools import partial
from typing import Any, List, Optional, Union

4
5
import torch
from torch import nn, Tensor
limm's avatar
limm committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from torch.ao.quantization import DeQuantStub, QuantStub

from ...ops.misc import Conv2dNormActivation, SqueezeExcitation
from ...transforms._presets import ImageClassification
from .._api import register_model, Weights, WeightsEnum
from .._meta import _IMAGENET_CATEGORIES
from .._utils import _ovewrite_named_param, handle_legacy_interface
from ..mobilenetv3 import (
    _mobilenet_v3_conf,
    InvertedResidual,
    InvertedResidualConfig,
    MobileNet_V3_Large_Weights,
    MobileNetV3,
)
from .utils import _fuse_modules, _replace_relu


__all__ = [
    "QuantizableMobileNetV3",
    "MobileNet_V3_Large_QuantizedWeights",
    "mobilenet_v3_large",
]
28
29
30


class QuantizableSqueezeExcitation(SqueezeExcitation):
limm's avatar
limm committed
31
32
33
34
    _version = 2

    def __init__(self, *args: Any, **kwargs: Any) -> None:
        kwargs["scale_activation"] = nn.Hardsigmoid
35
36
37
38
        super().__init__(*args, **kwargs)
        self.skip_mul = nn.quantized.FloatFunctional()

    def forward(self, input: Tensor) -> Tensor:
limm's avatar
limm committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        return self.skip_mul.mul(self._scale(input), input)

    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
        _fuse_modules(self, ["fc1", "activation"], is_qat, inplace=True)

    def _load_from_state_dict(
        self,
        state_dict,
        prefix,
        local_metadata,
        strict,
        missing_keys,
        unexpected_keys,
        error_msgs,
    ):
        version = local_metadata.get("version", None)

        if hasattr(self, "qconfig") and (version is None or version < 2):
            default_state_dict = {
                "scale_activation.activation_post_process.scale": torch.tensor([1.0]),
                "scale_activation.activation_post_process.activation_post_process.scale": torch.tensor([1.0]),
                "scale_activation.activation_post_process.zero_point": torch.tensor([0], dtype=torch.int32),
                "scale_activation.activation_post_process.activation_post_process.zero_point": torch.tensor(
                    [0], dtype=torch.int32
                ),
                "scale_activation.activation_post_process.fake_quant_enabled": torch.tensor([1]),
                "scale_activation.activation_post_process.observer_enabled": torch.tensor([1]),
            }
            for k, v in default_state_dict.items():
                full_key = prefix + k
                if full_key not in state_dict:
                    state_dict[full_key] = v

        super()._load_from_state_dict(
            state_dict,
            prefix,
            local_metadata,
            strict,
            missing_keys,
            unexpected_keys,
            error_msgs,
        )
81
82
83


class QuantizableInvertedResidual(InvertedResidual):
limm's avatar
limm committed
84
85
86
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
        super().__init__(*args, se_layer=QuantizableSqueezeExcitation, **kwargs)  # type: ignore[misc]
87
88
        self.skip_add = nn.quantized.FloatFunctional()

limm's avatar
limm committed
89
    def forward(self, x: Tensor) -> Tensor:
90
91
92
93
94
95
96
        if self.use_res_connect:
            return self.skip_add.add(x, self.block(x))
        else:
            return self.block(x)


class QuantizableMobileNetV3(MobileNetV3):
limm's avatar
limm committed
97
    def __init__(self, *args: Any, **kwargs: Any) -> None:
98
99
100
101
102
103
104
105
106
107
        """
        MobileNet V3 main class

        Args:
           Inherits args from floating point MobileNetV3
        """
        super().__init__(*args, **kwargs)
        self.quant = QuantStub()
        self.dequant = DeQuantStub()

limm's avatar
limm committed
108
    def forward(self, x: Tensor) -> Tensor:
109
110
111
112
113
        x = self.quant(x)
        x = self._forward_impl(x)
        x = self.dequant(x)
        return x

limm's avatar
limm committed
114
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
115
        for m in self.modules():
limm's avatar
limm committed
116
117
118
119
120
121
122
            if type(m) is Conv2dNormActivation:
                modules_to_fuse = ["0", "1"]
                if len(m) == 3 and type(m[2]) is nn.ReLU:
                    modules_to_fuse.append("2")
                _fuse_modules(m, modules_to_fuse, is_qat, inplace=True)
            elif type(m) is QuantizableSqueezeExcitation:
                m.fuse_model(is_qat)
123
124
125
126
127


def _mobilenet_v3_model(
    inverted_residual_setting: List[InvertedResidualConfig],
    last_channel: int,
limm's avatar
limm committed
128
    weights: Optional[WeightsEnum],
129
130
    progress: bool,
    quantize: bool,
limm's avatar
limm committed
131
132
133
134
135
136
137
138
    **kwargs: Any,
) -> QuantizableMobileNetV3:
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
        if "backend" in weights.meta:
            _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
    backend = kwargs.pop("backend", "qnnpack")

139
140
141
142
    model = QuantizableMobileNetV3(inverted_residual_setting, last_channel, block=QuantizableInvertedResidual, **kwargs)
    _replace_relu(model)

    if quantize:
limm's avatar
limm committed
143
144
145
146
147
148
149
        # Instead of quantizing the model and then loading the quantized weights we take a different approach.
        # We prepare the QAT model, load the QAT weights from training and then convert it.
        # This is done to avoid extremely low accuracies observed on the specific model. This is rather a workaround
        # for an unresolved bug on the eager quantization API detailed at: https://github.com/pytorch/vision/issues/5890
        model.fuse_model(is_qat=True)
        model.qconfig = torch.ao.quantization.get_default_qat_qconfig(backend)
        torch.ao.quantization.prepare_qat(model, inplace=True)
150

limm's avatar
limm committed
151
152
    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
153

limm's avatar
limm committed
154
155
    if quantize:
        torch.ao.quantization.convert(model, inplace=True)
156
157
158
159
160
        model.eval()

    return model


limm's avatar
limm committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
class MobileNet_V3_Large_QuantizedWeights(WeightsEnum):
    IMAGENET1K_QNNPACK_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/mobilenet_v3_large_qnnpack-5bcacf28.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            "num_params": 5483032,
            "min_size": (1, 1),
            "categories": _IMAGENET_CATEGORIES,
            "backend": "qnnpack",
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv3",
            "unquantized": MobileNet_V3_Large_Weights.IMAGENET1K_V1,
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 73.004,
                    "acc@5": 90.858,
                }
            },
            "_ops": 0.217,
            "_file_size": 21.554,
            "_docs": """
                These weights were produced by doing Quantization Aware Training (eager mode) on top of the unquantized
                weights listed below.
            """,
        },
    )
    DEFAULT = IMAGENET1K_QNNPACK_V1


@register_model(name="quantized_mobilenet_v3_large")
@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: MobileNet_V3_Large_QuantizedWeights.IMAGENET1K_QNNPACK_V1
        if kwargs.get("quantize", False)
        else MobileNet_V3_Large_Weights.IMAGENET1K_V1,
    )
)
def mobilenet_v3_large(
    *,
    weights: Optional[Union[MobileNet_V3_Large_QuantizedWeights, MobileNet_V3_Large_Weights]] = None,
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableMobileNetV3:
205
    """
limm's avatar
limm committed
206
207
    MobileNetV3 (Large) model from
    `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_.
208

limm's avatar
limm committed
209
210
211
212
    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.
213
214

    Args:
limm's avatar
limm committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        weights (:class:`~torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights` or :class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool): If True, displays a progress bar of the
            download to stderr. Default is True.
        quantize (bool): If True, return a quantized version of the model. Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/mobilenetv3.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.quantization.MobileNet_V3_Large_QuantizedWeights
        :members:
    .. autoclass:: torchvision.models.MobileNet_V3_Large_Weights
        :members:
        :noindex:
233
    """
limm's avatar
limm committed
234
235
236
237
    weights = (MobileNet_V3_Large_QuantizedWeights if quantize else MobileNet_V3_Large_Weights).verify(weights)

    inverted_residual_setting, last_channel = _mobilenet_v3_conf("mobilenet_v3_large", **kwargs)
    return _mobilenet_v3_model(inverted_residual_setting, last_channel, weights, progress, quantize, **kwargs)