googlenet.py 7.89 KB
Newer Older
1
import warnings
limm's avatar
limm committed
2
3
4
from functools import partial
from typing import Any, Optional, Union

5
6
import torch
import torch.nn as nn
limm's avatar
limm committed
7
from torch import Tensor
8
9
from torch.nn import functional as F

limm's avatar
limm committed
10
11
12
13
14
15
from ...transforms._presets import ImageClassification
from .._api import register_model, Weights, WeightsEnum
from .._meta import _IMAGENET_CATEGORIES
from .._utils import _ovewrite_named_param, handle_legacy_interface
from ..googlenet import BasicConv2d, GoogLeNet, GoogLeNet_Weights, GoogLeNetOutputs, Inception, InceptionAux
from .utils import _fuse_modules, _replace_relu, quantize_model
16
17


limm's avatar
limm committed
18
19
20
21
22
__all__ = [
    "QuantizableGoogLeNet",
    "GoogLeNet_QuantizedWeights",
    "googlenet",
]
23
24
25


class QuantizableBasicConv2d(BasicConv2d):
limm's avatar
limm committed
26
27
    def __init__(self, *args: Any, **kwargs: Any) -> None:
        super().__init__(*args, **kwargs)
28
29
        self.relu = nn.ReLU()

limm's avatar
limm committed
30
    def forward(self, x: Tensor) -> Tensor:
31
32
33
34
35
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x

limm's avatar
limm committed
36
37
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
        _fuse_modules(self, ["conv", "bn", "relu"], is_qat, inplace=True)
38
39
40


class QuantizableInception(Inception):
limm's avatar
limm committed
41
42
    def __init__(self, *args: Any, **kwargs: Any) -> None:
        super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs)  # type: ignore[misc]
43
44
        self.cat = nn.quantized.FloatFunctional()

limm's avatar
limm committed
45
    def forward(self, x: Tensor) -> Tensor:
46
47
48
49
50
        outputs = self._forward(x)
        return self.cat.cat(outputs, 1)


class QuantizableInceptionAux(InceptionAux):
limm's avatar
limm committed
51
52
53
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
        super().__init__(*args, conv_block=QuantizableBasicConv2d, **kwargs)  # type: ignore[misc]
54
55
        self.relu = nn.ReLU()

limm's avatar
limm committed
56
    def forward(self, x: Tensor) -> Tensor:
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
        x = F.adaptive_avg_pool2d(x, (4, 4))
        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
        x = self.conv(x)
        # N x 128 x 4 x 4
        x = torch.flatten(x, 1)
        # N x 2048
        x = self.relu(self.fc1(x))
        # N x 1024
        x = self.dropout(x)
        # N x 1024
        x = self.fc2(x)
        # N x 1000 (num_classes)

        return x


class QuantizableGoogLeNet(GoogLeNet):
limm's avatar
limm committed
75
76
77
78
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
        super().__init__(  # type: ignore[misc]
            *args, blocks=[QuantizableBasicConv2d, QuantizableInception, QuantizableInceptionAux], **kwargs
79
        )
limm's avatar
limm committed
80
81
        self.quant = torch.ao.quantization.QuantStub()
        self.dequant = torch.ao.quantization.DeQuantStub()
82

limm's avatar
limm committed
83
    def forward(self, x: Tensor) -> GoogLeNetOutputs:
84
85
86
87
88
89
90
91
92
93
94
95
        x = self._transform_input(x)
        x = self.quant(x)
        x, aux1, aux2 = self._forward(x)
        x = self.dequant(x)
        aux_defined = self.training and self.aux_logits
        if torch.jit.is_scripting():
            if not aux_defined:
                warnings.warn("Scripted QuantizableGoogleNet always returns GoogleNetOutputs Tuple")
            return GoogLeNetOutputs(x, aux2, aux1)
        else:
            return self.eager_outputs(x, aux2, aux1)

limm's avatar
limm committed
96
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
97
98
99
100
101
102
103
104
        r"""Fuse conv/bn/relu modules in googlenet model

        Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization.
        Model is modified in place.  Note that this operation does not change numerics
        and the model after modification is in floating point
        """

        for m in self.modules():
limm's avatar
limm committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
            if type(m) is QuantizableBasicConv2d:
                m.fuse_model(is_qat)


class GoogLeNet_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/googlenet_fbgemm-c81f6644.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            "num_params": 6624904,
            "min_size": (15, 15),
            "categories": _IMAGENET_CATEGORIES,
            "backend": "fbgemm",
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
            "unquantized": GoogLeNet_Weights.IMAGENET1K_V1,
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 69.826,
                    "acc@5": 89.404,
                }
            },
            "_ops": 1.498,
            "_file_size": 12.618,
            "_docs": """
                These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized
                weights listed below.
            """,
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


@register_model(name="quantized_googlenet")
@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: GoogLeNet_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else GoogLeNet_Weights.IMAGENET1K_V1,
    )
)
def googlenet(
    *,
    weights: Optional[Union[GoogLeNet_QuantizedWeights, GoogLeNet_Weights]] = None,
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableGoogLeNet:
    """GoogLeNet (Inception v1) model architecture from `Going Deeper with Convolutions <http://arxiv.org/abs/1409.4842>`__.

    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.

    Args:
        weights (:class:`~torchvision.models.quantization.GoogLeNet_QuantizedWeights` or :class:`~torchvision.models.GoogLeNet_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.GoogLeNet_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        quantize (bool, optional): If True, return a quantized version of the model. Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.QuantizableGoogLeNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/googlenet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.quantization.GoogLeNet_QuantizedWeights
        :members:

    .. autoclass:: torchvision.models.GoogLeNet_Weights
        :members:
        :noindex:
    """
    weights = (GoogLeNet_QuantizedWeights if quantize else GoogLeNet_Weights).verify(weights)

    original_aux_logits = kwargs.get("aux_logits", False)
    if weights is not None:
        if "transform_input" not in kwargs:
            _ovewrite_named_param(kwargs, "transform_input", True)
        _ovewrite_named_param(kwargs, "aux_logits", True)
        _ovewrite_named_param(kwargs, "init_weights", False)
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
        if "backend" in weights.meta:
            _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
    backend = kwargs.pop("backend", "fbgemm")

    model = QuantizableGoogLeNet(**kwargs)
    _replace_relu(model)
    if quantize:
        quantize_model(model, backend)

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
        if not original_aux_logits:
            model.aux_logits = False
            model.aux1 = None  # type: ignore[assignment]
            model.aux2 = None  # type: ignore[assignment]
        else:
            warnings.warn(
                "auxiliary heads in the pretrained googlenet model are NOT pretrained, so make sure to train them"
            )

    return model