mobilenetv2.py 9.48 KB
Newer Older
limm's avatar
limm committed
1
2
from functools import partial
from typing import Any, Callable, List, Optional
3

limm's avatar
limm committed
4
5
import torch
from torch import nn, Tensor
6

limm's avatar
limm committed
7
8
9
10
11
12
from ..ops.misc import Conv2dNormActivation
from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import register_model, Weights, WeightsEnum
from ._meta import _IMAGENET_CATEGORIES
from ._utils import _make_divisible, _ovewrite_named_param, handle_legacy_interface
13
14


limm's avatar
limm committed
15
__all__ = ["MobileNetV2", "MobileNet_V2_Weights", "mobilenet_v2"]
16
17
18
19
20


# necessary for backwards compatibility
class InvertedResidual(nn.Module):
    def __init__(
limm's avatar
limm committed
21
        self, inp: int, oup: int, stride: int, expand_ratio: int, norm_layer: Optional[Callable[..., nn.Module]] = None
22
    ) -> None:
limm's avatar
limm committed
23
        super().__init__()
24
        self.stride = stride
limm's avatar
limm committed
25
26
        if stride not in [1, 2]:
            raise ValueError(f"stride should be 1 or 2 instead of {stride}")
27
28
29
30
31
32
33
34
35
36

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        hidden_dim = int(round(inp * expand_ratio))
        self.use_res_connect = self.stride == 1 and inp == oup

        layers: List[nn.Module] = []
        if expand_ratio != 1:
            # pw
limm's avatar
limm committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
            layers.append(
                Conv2dNormActivation(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6)
            )
        layers.extend(
            [
                # dw
                Conv2dNormActivation(
                    hidden_dim,
                    hidden_dim,
                    stride=stride,
                    groups=hidden_dim,
                    norm_layer=norm_layer,
                    activation_layer=nn.ReLU6,
                ),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                norm_layer(oup),
            ]
        )
56
        self.conv = nn.Sequential(*layers)
57
        self.out_channels = oup
58
        self._is_cn = stride > 1
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

    def forward(self, x: Tensor) -> Tensor:
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileNetV2(nn.Module):
    def __init__(
        self,
        num_classes: int = 1000,
        width_mult: float = 1.0,
        inverted_residual_setting: Optional[List[List[int]]] = None,
        round_nearest: int = 8,
        block: Optional[Callable[..., nn.Module]] = None,
limm's avatar
limm committed
75
76
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        dropout: float = 0.2,
77
78
79
80
81
82
83
84
85
86
87
88
    ) -> None:
        """
        MobileNet V2 main class

        Args:
            num_classes (int): Number of classes
            width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
            inverted_residual_setting: Network structure
            round_nearest (int): Round the number of channels in each layer to be a multiple of this number
            Set to 1 to turn off rounding
            block: Module specifying inverted residual building block for mobilenet
            norm_layer: Module specifying the normalization layer to use
limm's avatar
limm committed
89
            dropout (float): The droupout probability
90
91

        """
limm's avatar
limm committed
92
93
        super().__init__()
        _log_api_usage_once(self)
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

        if block is None:
            block = InvertedResidual

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        input_channel = 32
        last_channel = 1280

        if inverted_residual_setting is None:
            inverted_residual_setting = [
                # t, c, n, s
                [1, 16, 1, 1],
                [6, 24, 2, 2],
                [6, 32, 3, 2],
                [6, 64, 4, 2],
                [6, 96, 3, 1],
                [6, 160, 3, 2],
                [6, 320, 1, 1],
            ]

        # only check the first element, assuming user knows t,c,n,s are required
        if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
limm's avatar
limm committed
118
119
120
            raise ValueError(
                f"inverted_residual_setting should be non-empty or a 4-element list, got {inverted_residual_setting}"
            )
121
122
123
124

        # building first layer
        input_channel = _make_divisible(input_channel * width_mult, round_nearest)
        self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
limm's avatar
limm committed
125
126
127
        features: List[nn.Module] = [
            Conv2dNormActivation(3, input_channel, stride=2, norm_layer=norm_layer, activation_layer=nn.ReLU6)
        ]
128
129
130
131
132
133
134
135
        # building inverted residual blocks
        for t, c, n, s in inverted_residual_setting:
            output_channel = _make_divisible(c * width_mult, round_nearest)
            for i in range(n):
                stride = s if i == 0 else 1
                features.append(block(input_channel, output_channel, stride, expand_ratio=t, norm_layer=norm_layer))
                input_channel = output_channel
        # building last several layers
limm's avatar
limm committed
136
137
138
139
140
        features.append(
            Conv2dNormActivation(
                input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6
            )
        )
141
142
143
144
145
        # make it nn.Sequential
        self.features = nn.Sequential(*features)

        # building classifier
        self.classifier = nn.Sequential(
limm's avatar
limm committed
146
            nn.Dropout(p=dropout),
147
148
149
150
151
152
            nn.Linear(self.last_channel, num_classes),
        )

        # weight initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
limm's avatar
limm committed
153
                nn.init.kaiming_normal_(m.weight, mode="fan_out")
154
155
156
157
158
159
160
161
162
163
164
165
166
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        # This exists since TorchScript doesn't support inheritance, so the superclass method
        # (this one) needs to have a name other than `forward` that can be accessed in a subclass
        x = self.features(x)
167
168
169
        # Cannot use "squeeze" as batch-size can be 1
        x = nn.functional.adaptive_avg_pool2d(x, (1, 1))
        x = torch.flatten(x, 1)
170
171
172
173
174
175
176
        x = self.classifier(x)
        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)


limm's avatar
limm committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
_COMMON_META = {
    "num_params": 3504872,
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
}


class MobileNet_V2_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/mobilenet_v2-b0353104.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv2",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 71.878,
                    "acc@5": 90.286,
                }
            },
            "_ops": 0.301,
            "_file_size": 13.555,
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/mobilenet_v2-7ebf99e0.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-reg-tuning",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 72.154,
                    "acc@5": 90.822,
                }
            },
            "_ops": 0.301,
            "_file_size": 13.598,
            "_docs": """
                These weights improve upon the results of the original paper by using a modified version of TorchVision's
                `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
        },
    )
    DEFAULT = IMAGENET1K_V2


@register_model()
@handle_legacy_interface(weights=("pretrained", MobileNet_V2_Weights.IMAGENET1K_V1))
def mobilenet_v2(
    *, weights: Optional[MobileNet_V2_Weights] = None, progress: bool = True, **kwargs: Any
) -> MobileNetV2:
    """MobileNetV2 architecture from the `MobileNetV2: Inverted Residuals and Linear
    Bottlenecks <https://arxiv.org/abs/1801.04381>`_ paper.
233
234

    Args:
limm's avatar
limm committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        weights (:class:`~torchvision.models.MobileNet_V2_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.MobileNet_V2_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.mobilenetv2.MobileNetV2``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.MobileNet_V2_Weights
        :members:
249
    """
limm's avatar
limm committed
250
251
252
253
254
    weights = MobileNet_V2_Weights.verify(weights)

    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

255
    model = MobileNetV2(**kwargs)
limm's avatar
limm committed
256
257
258
259

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))

260
    return model