faster_rcnn.py 36.1 KB
Newer Older
limm's avatar
limm committed
1
from typing import Any, Callable, List, Optional, Tuple, Union
2

limm's avatar
limm committed
3
4
5
import torch
import torch.nn.functional as F
from torch import nn
6
7
from torchvision.ops import MultiScaleRoIAlign

limm's avatar
limm committed
8
9
10
11
12
13
14
from ...ops import misc as misc_nn_ops
from ...transforms._presets import ObjectDetection
from .._api import register_model, Weights, WeightsEnum
from .._meta import _COCO_CATEGORIES
from .._utils import _ovewrite_value_param, handle_legacy_interface
from ..mobilenetv3 import mobilenet_v3_large, MobileNet_V3_Large_Weights
from ..resnet import resnet50, ResNet50_Weights
15
from ._utils import overwrite_eps
16
from .anchor_utils import AnchorGenerator
limm's avatar
limm committed
17
from .backbone_utils import _mobilenet_extractor, _resnet_fpn_extractor, _validate_trainable_layers
18
19
from .generalized_rcnn import GeneralizedRCNN
from .roi_heads import RoIHeads
limm's avatar
limm committed
20
from .rpn import RegionProposalNetwork, RPNHead
21
22
23
24
from .transform import GeneralizedRCNNTransform


__all__ = [
limm's avatar
limm committed
25
26
27
28
29
30
31
32
33
    "FasterRCNN",
    "FasterRCNN_ResNet50_FPN_Weights",
    "FasterRCNN_ResNet50_FPN_V2_Weights",
    "FasterRCNN_MobileNet_V3_Large_FPN_Weights",
    "FasterRCNN_MobileNet_V3_Large_320_FPN_Weights",
    "fasterrcnn_resnet50_fpn",
    "fasterrcnn_resnet50_fpn_v2",
    "fasterrcnn_mobilenet_v3_large_fpn",
    "fasterrcnn_mobilenet_v3_large_320_fpn",
34
35
36
]


limm's avatar
limm committed
37
38
39
40
41
42
def _default_anchorgen():
    anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
    aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
    return AnchorGenerator(anchor_sizes, aspect_ratios)


43
class FasterRCNN(GeneralizedRCNN):
44
45
46
47
48
49
    """
    Implements Faster R-CNN.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes.

limm's avatar
limm committed
50
    The behavior of the model changes depending on if it is in training or evaluation mode.
51

limm's avatar
limm committed
52
    During training, the model expects both the input tensors and targets (list of dictionary),
53
    containing:
54
55
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
56
        - labels (Int64Tensor[N]): the class label for each ground-truth box
57

58
59
60
61
62
63
    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows:
64
65
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
66
        - labels (Int64Tensor[N]): the predicted labels for each image
67
        - scores (Tensor[N]): the scores or each prediction
68

69
    Args:
70
        backbone (nn.Module): the network used to compute the features for the model.
limm's avatar
limm committed
71
            It should contain an out_channels attribute, which indicates the number of output
72
73
74
75
            channels that each feature map has (and it should be the same for all feature maps).
            The backbone should return a single Tensor or and OrderedDict[Tensor].
        num_classes (int): number of output classes of the model (including the background).
            If box_predictor is specified, num_classes should be None.
limm's avatar
limm committed
76
77
78
79
80
81
        min_size (int): Images are rescaled before feeding them to the backbone:
            we attempt to preserve the aspect ratio and scale the shorter edge
            to ``min_size``. If the resulting longer edge exceeds ``max_size``,
            then downscale so that the longer edge does not exceed ``max_size``.
            This may result in the shorter edge beeing lower than ``min_size``.
        max_size (int): See ``min_size``.
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN
        rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training
        rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing
        rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training
        rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing
        rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals
        rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training of the RPN.
        rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training of the RPN.
        rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN
            for computing the loss
        rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training
            of the RPN
limm's avatar
limm committed
103
        rpn_score_thresh (float): only return proposals with an objectness score greater than rpn_score_thresh
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in
            the locations indicated by the bounding boxes
        box_head (nn.Module): module that takes the cropped feature maps as input
        box_predictor (nn.Module): module that takes the output of box_head and returns the
            classification logits and box regression deltas.
        box_score_thresh (float): during inference, only return proposals with a classification score
            greater than box_score_thresh
        box_nms_thresh (float): NMS threshold for the prediction head. Used during inference
        box_detections_per_img (int): maximum number of detections per image, for all classes.
        box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be
            considered as positive during training of the classification head
        box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be
            considered as negative during training of the classification head
        box_batch_size_per_image (int): number of proposals that are sampled during training of the
            classification head
        box_positive_fraction (float): proportion of positive proposals in a mini-batch during training
            of the classification head
        bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the
            bounding boxes

    Example::

Gu-ni-kim's avatar
Gu-ni-kim committed
126
        >>> import torch
127
128
129
130
131
        >>> import torchvision
        >>> from torchvision.models.detection import FasterRCNN
        >>> from torchvision.models.detection.rpn import AnchorGenerator
        >>> # load a pre-trained model for classification and return
        >>> # only the features
limm's avatar
limm committed
132
        >>> backbone = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).features
133
        >>> # FasterRCNN needs to know the number of
limm's avatar
limm committed
134
        >>> # output channels in a backbone. For mobilenet_v2, it's 1280,
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        >>> # so we need to add it here
        >>> backbone.out_channels = 1280
        >>>
        >>> # let's make the RPN generate 5 x 3 anchors per spatial
        >>> # location, with 5 different sizes and 3 different aspect
        >>> # ratios. We have a Tuple[Tuple[int]] because each feature
        >>> # map could potentially have different sizes and
        >>> # aspect ratios
        >>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
        >>>                                    aspect_ratios=((0.5, 1.0, 2.0),))
        >>>
        >>> # let's define what are the feature maps that we will
        >>> # use to perform the region of interest cropping, as well as
        >>> # the size of the crop after rescaling.
        >>> # if your backbone returns a Tensor, featmap_names is expected to
150
        >>> # be ['0']. More generally, the backbone should return an
151
152
        >>> # OrderedDict[Tensor], and in featmap_names you can choose which
        >>> # feature maps to use.
153
        >>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
154
155
156
157
158
159
160
161
        >>>                                                 output_size=7,
        >>>                                                 sampling_ratio=2)
        >>>
        >>> # put the pieces together inside a FasterRCNN model
        >>> model = FasterRCNN(backbone,
        >>>                    num_classes=2,
        >>>                    rpn_anchor_generator=anchor_generator,
        >>>                    box_roi_pool=roi_pooler)
162
163
164
165
166
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
    """

limm's avatar
limm committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    def __init__(
        self,
        backbone,
        num_classes=None,
        # transform parameters
        min_size=800,
        max_size=1333,
        image_mean=None,
        image_std=None,
        # RPN parameters
        rpn_anchor_generator=None,
        rpn_head=None,
        rpn_pre_nms_top_n_train=2000,
        rpn_pre_nms_top_n_test=1000,
        rpn_post_nms_top_n_train=2000,
        rpn_post_nms_top_n_test=1000,
        rpn_nms_thresh=0.7,
        rpn_fg_iou_thresh=0.7,
        rpn_bg_iou_thresh=0.3,
        rpn_batch_size_per_image=256,
        rpn_positive_fraction=0.5,
        rpn_score_thresh=0.0,
        # Box parameters
        box_roi_pool=None,
        box_head=None,
        box_predictor=None,
        box_score_thresh=0.05,
        box_nms_thresh=0.5,
        box_detections_per_img=100,
        box_fg_iou_thresh=0.5,
        box_bg_iou_thresh=0.5,
        box_batch_size_per_image=512,
        box_positive_fraction=0.25,
        bbox_reg_weights=None,
        **kwargs,
    ):
203
204
205
206
207

        if not hasattr(backbone, "out_channels"):
            raise ValueError(
                "backbone should contain an attribute out_channels "
                "specifying the number of output channels (assumed to be the "
limm's avatar
limm committed
208
209
                "same for all the levels)"
            )
210

limm's avatar
limm committed
211
212
213
214
215
216
217
218
        if not isinstance(rpn_anchor_generator, (AnchorGenerator, type(None))):
            raise TypeError(
                f"rpn_anchor_generator should be of type AnchorGenerator or None instead of {type(rpn_anchor_generator)}"
            )
        if not isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None))):
            raise TypeError(
                f"box_roi_pool should be of type MultiScaleRoIAlign or None instead of {type(box_roi_pool)}"
            )
219
220
221
222
223
224

        if num_classes is not None:
            if box_predictor is not None:
                raise ValueError("num_classes should be None when box_predictor is specified")
        else:
            if box_predictor is None:
limm's avatar
limm committed
225
                raise ValueError("num_classes should not be None when box_predictor is not specified")
226
227
228
229

        out_channels = backbone.out_channels

        if rpn_anchor_generator is None:
limm's avatar
limm committed
230
            rpn_anchor_generator = _default_anchorgen()
231
        if rpn_head is None:
limm's avatar
limm committed
232
            rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
233
234
235
236
237

        rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
        rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)

        rpn = RegionProposalNetwork(
limm's avatar
limm committed
238
239
240
241
242
243
244
245
246
247
248
            rpn_anchor_generator,
            rpn_head,
            rpn_fg_iou_thresh,
            rpn_bg_iou_thresh,
            rpn_batch_size_per_image,
            rpn_positive_fraction,
            rpn_pre_nms_top_n,
            rpn_post_nms_top_n,
            rpn_nms_thresh,
            score_thresh=rpn_score_thresh,
        )
249
250

        if box_roi_pool is None:
limm's avatar
limm committed
251
            box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
252
253
254
255

        if box_head is None:
            resolution = box_roi_pool.output_size[0]
            representation_size = 1024
limm's avatar
limm committed
256
            box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
257
258
259

        if box_predictor is None:
            representation_size = 1024
limm's avatar
limm committed
260
            box_predictor = FastRCNNPredictor(representation_size, num_classes)
261
262
263

        roi_heads = RoIHeads(
            # Box
limm's avatar
limm committed
264
265
266
267
268
269
270
            box_roi_pool,
            box_head,
            box_predictor,
            box_fg_iou_thresh,
            box_bg_iou_thresh,
            box_batch_size_per_image,
            box_positive_fraction,
271
            bbox_reg_weights,
limm's avatar
limm committed
272
273
274
275
            box_score_thresh,
            box_nms_thresh,
            box_detections_per_img,
        )
276
277
278
279
280

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
limm's avatar
limm committed
281
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
282

limm's avatar
limm committed
283
        super().__init__(backbone, rpn, roi_heads, transform)
284
285
286
287


class TwoMLPHead(nn.Module):
    """
288
289
    Standard heads for FPN-based models

290
    Args:
291
292
        in_channels (int): number of input channels
        representation_size (int): size of the intermediate representation
293
294
295
    """

    def __init__(self, in_channels, representation_size):
limm's avatar
limm committed
296
        super().__init__()
297
298
299
300
301
302
303
304
305
306
307
308
309

        self.fc6 = nn.Linear(in_channels, representation_size)
        self.fc7 = nn.Linear(representation_size, representation_size)

    def forward(self, x):
        x = x.flatten(start_dim=1)

        x = F.relu(self.fc6(x))
        x = F.relu(self.fc7(x))

        return x


limm's avatar
limm committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
class FastRCNNConvFCHead(nn.Sequential):
    def __init__(
        self,
        input_size: Tuple[int, int, int],
        conv_layers: List[int],
        fc_layers: List[int],
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ):
        """
        Args:
            input_size (Tuple[int, int, int]): the input size in CHW format.
            conv_layers (list): feature dimensions of each Convolution layer
            fc_layers (list): feature dimensions of each FCN layer
            norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
        """
        in_channels, in_height, in_width = input_size

        blocks = []
        previous_channels = in_channels
        for current_channels in conv_layers:
            blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer))
            previous_channels = current_channels
        blocks.append(nn.Flatten())
        previous_channels = previous_channels * in_height * in_width
        for current_channels in fc_layers:
            blocks.append(nn.Linear(previous_channels, current_channels))
            blocks.append(nn.ReLU(inplace=True))
            previous_channels = current_channels

        super().__init__(*blocks)
        for layer in self.modules():
            if isinstance(layer, nn.Conv2d):
                nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu")
                if layer.bias is not None:
                    nn.init.zeros_(layer.bias)


347
class FastRCNNPredictor(nn.Module):
348
349
350
351
    """
    Standard classification + bounding box regression layers
    for Fast R-CNN.

352
    Args:
353
354
355
356
        in_channels (int): number of input channels
        num_classes (int): number of output classes (including background)
    """

357
    def __init__(self, in_channels, num_classes):
limm's avatar
limm committed
358
        super().__init__()
359
360
361
362
        self.cls_score = nn.Linear(in_channels, num_classes)
        self.bbox_pred = nn.Linear(in_channels, num_classes * 4)

    def forward(self, x):
eellison's avatar
eellison committed
363
        if x.dim() == 4:
limm's avatar
limm committed
364
365
366
367
            torch._assert(
                list(x.shape[2:]) == [1, 1],
                f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
            )
368
369
370
371
372
373
374
        x = x.flatten(start_dim=1)
        scores = self.cls_score(x)
        bbox_deltas = self.bbox_pred(x)

        return scores, bbox_deltas


limm's avatar
limm committed
375
376
377
_COMMON_META = {
    "categories": _COCO_CATEGORIES,
    "min_size": (1, 1),
378
379
380
}


limm's avatar
limm committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
class FasterRCNN_ResNet50_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 41755286,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-resnet-50-fpn",
            "_metrics": {
                "COCO-val2017": {
                    "box_map": 37.0,
                }
            },
            "_ops": 134.38,
            "_file_size": 159.743,
            "_docs": """These weights were produced by following a similar training recipe as on the paper.""",
        },
    )
    DEFAULT = COCO_V1


class FasterRCNN_ResNet50_FPN_V2_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_v2_coco-dd69338a.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 43712278,
            "recipe": "https://github.com/pytorch/vision/pull/5763",
            "_metrics": {
                "COCO-val2017": {
                    "box_map": 46.7,
                }
            },
            "_ops": 280.371,
            "_file_size": 167.104,
            "_docs": """These weights were produced using an enhanced training recipe to boost the model accuracy.""",
        },
    )
    DEFAULT = COCO_V1


class FasterRCNN_MobileNet_V3_Large_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_fpn-fb6a3cc7.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 19386354,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-mobilenetv3-large-fpn",
            "_metrics": {
                "COCO-val2017": {
                    "box_map": 32.8,
                }
            },
            "_ops": 4.494,
            "_file_size": 74.239,
            "_docs": """These weights were produced by following a similar training recipe as on the paper.""",
        },
    )
    DEFAULT = COCO_V1


class FasterRCNN_MobileNet_V3_Large_320_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_320_fpn-907ea3f9.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 19386354,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-mobilenetv3-large-320-fpn",
            "_metrics": {
                "COCO-val2017": {
                    "box_map": 22.8,
                }
            },
            "_ops": 0.719,
            "_file_size": 74.239,
            "_docs": """These weights were produced by following a similar training recipe as on the paper.""",
        },
    )
    DEFAULT = COCO_V1


@register_model()
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_ResNet50_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
)
def fasterrcnn_resnet50_fpn(
    *,
    weights: Optional[FasterRCNN_ResNet50_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
479
    """
limm's avatar
limm committed
480
481
482
483
484
    Faster R-CNN model with a ResNet-50-FPN backbone from the `Faster R-CNN: Towards Real-Time Object
    Detection with Region Proposal Networks <https://arxiv.org/abs/1506.01497>`__
    paper.

    .. betastatus:: detection module
485

486
487
488
    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

limm's avatar
limm committed
489
    The behavior of the model changes depending on if it is in training or evaluation mode.
490

limm's avatar
limm committed
491
    During training, the model expects both the input tensors and a targets (list of dictionary),
492
    containing:
493

494
495
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
496
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box
497
498
499
500
501
502

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
503
    follows, where ``N`` is the number of detections:
504

505
506
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
507
508
509
510
        - labels (``Int64Tensor[N]``): the predicted labels for each detection
        - scores (``Tensor[N]``): the scores of each detection

    For more details on the output, you may refer to :ref:`instance_seg_output`.
511

512
513
    Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.

514
515
    Example::

limm's avatar
limm committed
516
        >>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
517
518
        >>> # For training
        >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4)
limm's avatar
limm committed
519
        >>> boxes[:, :, 2:4] = boxes[:, :, 0:2] + boxes[:, :, 2:4]
520
        >>> labels = torch.randint(1, 91, (4, 11))
521
        >>> images = list(image for image in images)
522
        >>> targets = []
523
524
525
        >>> for i in range(len(images)):
        >>>     d = {}
        >>>     d['boxes'] = boxes[i]
526
        >>>     d['labels'] = labels[i]
527
        >>>     targets.append(d)
528
529
530
        >>> output = model(images, targets)
        >>> # For inference
        >>> model.eval()
531
532
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
533
534
535
        >>>
        >>> # optionally, if you want to export the model to ONNX:
        >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)
536

537
    Args:
limm's avatar
limm committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
        weights (:class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background)
        weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The
            pretrained weights for the backbone.
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from
            final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are
            trainable. If ``None`` is passed (the default) this value is set to 3.
        **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights
        :members:
558
    """
limm's avatar
limm committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
    weights = FasterRCNN_ResNet50_FPN_Weights.verify(weights)
    weights_backbone = ResNet50_Weights.verify(weights_backbone)

    if weights is not None:
        weights_backbone = None
        num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
    elif num_classes is None:
        num_classes = 91

    is_trained = weights is not None or weights_backbone is not None
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)
    norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d

    backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
    backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers)
    model = FasterRCNN(backbone, num_classes=num_classes, **kwargs)

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
        if weights == FasterRCNN_ResNet50_FPN_Weights.COCO_V1:
            overwrite_eps(model, 0.0)

581
    return model
582
583


limm's avatar
limm committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
@register_model()
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_ResNet50_FPN_V2_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
)
def fasterrcnn_resnet50_fpn_v2(
    *,
    weights: Optional[FasterRCNN_ResNet50_FPN_V2_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[ResNet50_Weights] = None,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
    """
    Constructs an improved Faster R-CNN model with a ResNet-50-FPN backbone from `Benchmarking Detection
    Transfer Learning with Vision Transformers <https://arxiv.org/abs/2111.11429>`__ paper.

    .. betastatus:: detection module
603

limm's avatar
limm committed
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.

    Args:
        weights (:class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_V2_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_V2_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background)
        weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The
            pretrained weights for the backbone.
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from
            final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are
            trainable. If ``None`` is passed (the default) this value is set to 3.
        **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.detection.FasterRCNN_ResNet50_FPN_V2_Weights
        :members:
    """
    weights = FasterRCNN_ResNet50_FPN_V2_Weights.verify(weights)
    weights_backbone = ResNet50_Weights.verify(weights_backbone)

    if weights is not None:
        weights_backbone = None
        num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
    elif num_classes is None:
        num_classes = 91

    is_trained = weights is not None or weights_backbone is not None
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)

    backbone = resnet50(weights=weights_backbone, progress=progress)
    backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers, norm_layer=nn.BatchNorm2d)
    rpn_anchor_generator = _default_anchorgen()
    rpn_head = RPNHead(backbone.out_channels, rpn_anchor_generator.num_anchors_per_location()[0], conv_depth=2)
    box_head = FastRCNNConvFCHead(
        (backbone.out_channels, 7, 7), [256, 256, 256, 256], [1024], norm_layer=nn.BatchNorm2d
    )
    model = FasterRCNN(
        backbone,
        num_classes=num_classes,
        rpn_anchor_generator=rpn_anchor_generator,
        rpn_head=rpn_head,
        box_head=box_head,
        **kwargs,
    )

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))

    return model
662

limm's avatar
limm committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

def _fasterrcnn_mobilenet_v3_large_fpn(
    *,
    weights: Optional[Union[FasterRCNN_MobileNet_V3_Large_FPN_Weights, FasterRCNN_MobileNet_V3_Large_320_FPN_Weights]],
    progress: bool,
    num_classes: Optional[int],
    weights_backbone: Optional[MobileNet_V3_Large_Weights],
    trainable_backbone_layers: Optional[int],
    **kwargs: Any,
) -> FasterRCNN:
    if weights is not None:
        weights_backbone = None
        num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
    elif num_classes is None:
        num_classes = 91

    is_trained = weights is not None or weights_backbone is not None
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 6, 3)
    norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d

    backbone = mobilenet_v3_large(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
    backbone = _mobilenet_extractor(backbone, True, trainable_backbone_layers)
    anchor_sizes = (
        (
            32,
            64,
            128,
            256,
            512,
        ),
    ) * 3
694
    aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
limm's avatar
limm committed
695
696
697
698
699
700
    model = FasterRCNN(
        backbone, num_classes, rpn_anchor_generator=AnchorGenerator(anchor_sizes, aspect_ratios), **kwargs
    )

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
701
702
703
704

    return model


limm's avatar
limm committed
705
706
707
708
709
710
711
712
713
714
715
716
717
718
@register_model()
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
)
def fasterrcnn_mobilenet_v3_large_320_fpn(
    *,
    weights: Optional[FasterRCNN_MobileNet_V3_Large_320_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
719
    """
limm's avatar
limm committed
720
721
722
723
    Low resolution Faster R-CNN model with a MobileNetV3-Large backbone tuned for mobile use cases.

    .. betastatus:: detection module

724
725
726
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
727
728
729

    Example::

limm's avatar
limm committed
730
        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(weights=FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.DEFAULT)
731
732
733
734
735
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
limm's avatar
limm committed
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
        weights (:class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_320_FPN_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_320_FPN_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background)
        weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The
            pretrained weights for the backbone.
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from
            final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are
            trainable. If ``None`` is passed (the default) this value is set to 3.
        **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_320_FPN_Weights
        :members:
756
    """
limm's avatar
limm committed
757
758
759
    weights = FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.verify(weights)
    weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)

760
761
762
763
764
765
766
    defaults = {
        "min_size": 320,
        "max_size": 640,
        "rpn_pre_nms_top_n_test": 150,
        "rpn_post_nms_top_n_test": 150,
        "rpn_score_thresh": 0.05,
    }
767

768
    kwargs = {**defaults, **kwargs}
limm's avatar
limm committed
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
    return _fasterrcnn_mobilenet_v3_large_fpn(
        weights=weights,
        progress=progress,
        num_classes=num_classes,
        weights_backbone=weights_backbone,
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )


@register_model()
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_MobileNet_V3_Large_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
)
def fasterrcnn_mobilenet_v3_large_fpn(
    *,
    weights: Optional[FasterRCNN_MobileNet_V3_Large_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
793
794
    """
    Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone.
limm's avatar
limm committed
795
796
797

    .. betastatus:: detection module

798
799
800
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
801
802
803

    Example::

limm's avatar
limm committed
804
        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(weights=FasterRCNN_MobileNet_V3_Large_FPN_Weights.DEFAULT)
805
806
807
808
809
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
limm's avatar
limm committed
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
        weights (:class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_FPN_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_FPN_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background)
        weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The
            pretrained weights for the backbone.
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from
            final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are
            trainable. If ``None`` is passed (the default) this value is set to 3.
        **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_FPN_Weights
        :members:
830
    """
limm's avatar
limm committed
831
832
833
    weights = FasterRCNN_MobileNet_V3_Large_FPN_Weights.verify(weights)
    weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)

834
835
836
837
838
    defaults = {
        "rpn_score_thresh": 0.05,
    }

    kwargs = {**defaults, **kwargs}
limm's avatar
limm committed
839
840
841
842
843
844
845
846
    return _fasterrcnn_mobilenet_v3_large_fpn(
        weights=weights,
        progress=progress,
        num_classes=num_classes,
        weights_backbone=weights_backbone,
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )