roi_pool_kernel.cpp 4.25 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#include "../roi_pool.h"

#include <torch/autograd.h>
#include <torch/types.h>

namespace vision {
namespace ops {

namespace {

class ROIPoolFunction : public torch::autograd::Function<ROIPoolFunction> {
 public:
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::Variable& input,
      const torch::autograd::Variable& rois,
      double spatial_scale,
limm's avatar
limm committed
18
19
      c10::SymInt pooled_height,
      c10::SymInt pooled_width) {
20
21
22
    ctx->saved_data["spatial_scale"] = spatial_scale;
    ctx->saved_data["pooled_height"] = pooled_height;
    ctx->saved_data["pooled_width"] = pooled_width;
limm's avatar
limm committed
23
    ctx->saved_data["input_shape"] = input.sym_sizes();
24
    at::AutoDispatchBelowADInplaceOrView g;
limm's avatar
limm committed
25
26
    auto result = roi_pool_symint(
        input, rois, spatial_scale, pooled_height, pooled_width);
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

    auto output = std::get<0>(result);
    auto argmax = std::get<1>(result);
    ctx->save_for_backward({rois, argmax});
    ctx->mark_non_differentiable({argmax});

    return {output, argmax};
  }

  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::variable_list& grad_output) {
    // Use data saved in forward
    auto saved = ctx->get_saved_variables();
    auto rois = saved[0];
    auto argmax = saved[1];
limm's avatar
limm committed
43
44
    auto input_shape = ctx->saved_data["input_shape"].toList();
    auto grad_in = detail::_roi_pool_backward_symint(
45
46
47
48
        grad_output[0],
        rois,
        argmax,
        ctx->saved_data["spatial_scale"].toDouble(),
limm's avatar
limm committed
49
50
51
52
53
54
        ctx->saved_data["pooled_height"].toSymInt(),
        ctx->saved_data["pooled_width"].toSymInt(),
        input_shape[0].get().toSymInt(),
        input_shape[1].get().toSymInt(),
        input_shape[2].get().toSymInt(),
        input_shape[3].get().toSymInt());
55

56
57
58
59
60
61
    return {
        grad_in,
        torch::autograd::Variable(),
        torch::autograd::Variable(),
        torch::autograd::Variable(),
        torch::autograd::Variable()};
62
63
64
65
66
67
68
69
70
71
72
73
74
  }
};

// TODO: There should be an easier way to do this
class ROIPoolBackwardFunction
    : public torch::autograd::Function<ROIPoolBackwardFunction> {
 public:
  static torch::autograd::variable_list forward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::Variable& grad,
      const torch::autograd::Variable& rois,
      const torch::autograd::Variable& argmax,
      double spatial_scale,
limm's avatar
limm committed
75
76
77
78
79
80
      c10::SymInt pooled_height,
      c10::SymInt pooled_width,
      c10::SymInt batch_size,
      c10::SymInt channels,
      c10::SymInt height,
      c10::SymInt width) {
81
    at::AutoDispatchBelowADInplaceOrView g;
limm's avatar
limm committed
82
    auto grad_in = detail::_roi_pool_backward_symint(
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        grad,
        rois,
        argmax,
        spatial_scale,
        pooled_height,
        pooled_width,
        batch_size,
        channels,
        height,
        width);

    return {grad_in};
  }

  static torch::autograd::variable_list backward(
      torch::autograd::AutogradContext* ctx,
      const torch::autograd::variable_list& grad_output) {
    TORCH_CHECK(0, "double backwards on roi_pool not supported");
  }
};

std::tuple<at::Tensor, at::Tensor> roi_pool_autograd(
    const at::Tensor& input,
    const at::Tensor& rois,
    double spatial_scale,
limm's avatar
limm committed
108
109
    c10::SymInt pooled_height,
    c10::SymInt pooled_width) {
110
111
112
113
114
115
116
117
118
119
120
  auto result = ROIPoolFunction::apply(
      input, rois, spatial_scale, pooled_height, pooled_width);

  return std::make_tuple(result[0], result[1]);
}

at::Tensor roi_pool_backward_autograd(
    const at::Tensor& grad,
    const at::Tensor& rois,
    const at::Tensor& argmax,
    double spatial_scale,
limm's avatar
limm committed
121
122
123
124
125
126
    c10::SymInt pooled_height,
    c10::SymInt pooled_width,
    c10::SymInt batch_size,
    c10::SymInt channels,
    c10::SymInt height,
    c10::SymInt width) {
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
  return ROIPoolBackwardFunction::apply(
      grad,
      rois,
      argmax,
      spatial_scale,
      pooled_height,
      pooled_width,
      batch_size,
      channels,
      height,
      width)[0];
}

} // namespace

TORCH_LIBRARY_IMPL(torchvision, Autograd, m) {
143
144
145
146
147
148
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::roi_pool"),
      TORCH_FN(roi_pool_autograd));
  m.impl(
      TORCH_SELECTIVE_NAME("torchvision::_roi_pool_backward"),
      TORCH_FN(roi_pool_backward_autograd));
149
150
151
152
}

} // namespace ops
} // namespace vision