test_transforms_tensor.py 34.3 KB
Newer Older
1
import os
limm's avatar
limm committed
2
import sys
3
4

import numpy as np
limm's avatar
limm committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import PIL.Image
import pytest
import torch
from common_utils import (
    _assert_approx_equal_tensor_to_pil,
    _assert_equal_tensor_to_pil,
    _create_data,
    _create_data_batch,
    assert_equal,
    cpu_and_cuda,
    float_dtypes,
    get_tmp_dir,
    int_dtypes,
)
from torchvision import transforms as T
from torchvision.transforms import functional as F, InterpolationMode
from torchvision.transforms.autoaugment import _apply_op
22

limm's avatar
limm committed
23
24
25
26
27
28
NEAREST, NEAREST_EXACT, BILINEAR, BICUBIC = (
    InterpolationMode.NEAREST,
    InterpolationMode.NEAREST_EXACT,
    InterpolationMode.BILINEAR,
    InterpolationMode.BICUBIC,
)
29
30


limm's avatar
limm committed
31
32
33
34
35
36
def _test_transform_vs_scripted(transform, s_transform, tensor, msg=None):
    torch.manual_seed(12)
    out1 = transform(tensor)
    torch.manual_seed(12)
    out2 = s_transform(tensor)
    assert_equal(out1, out2, msg=msg)
37

vfdev's avatar
vfdev committed
38

limm's avatar
limm committed
39
40
41
def _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors, msg=None):
    torch.manual_seed(12)
    transformed_batch = transform(batch_tensors)
vfdev's avatar
vfdev committed
42

limm's avatar
limm committed
43
44
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
vfdev's avatar
vfdev committed
45
        torch.manual_seed(12)
limm's avatar
limm committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        transformed_img = transform(img_tensor)
        assert_equal(transformed_img, transformed_batch[i, ...], msg=msg)

    torch.manual_seed(12)
    s_transformed_batch = s_transform(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch, msg=msg)


def _test_functional_op(f, device, channels=3, fn_kwargs=None, test_exact_match=True, **match_kwargs):
    fn_kwargs = fn_kwargs or {}

    tensor, pil_img = _create_data(height=10, width=10, channels=channels, device=device)
    transformed_tensor = f(tensor, **fn_kwargs)
    transformed_pil_img = f(pil_img, **fn_kwargs)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)


def _test_class_op(transform_cls, device, channels=3, meth_kwargs=None, test_exact_match=True, **match_kwargs):
    meth_kwargs = meth_kwargs or {}

    # test for class interface
    f = transform_cls(**meth_kwargs)
    scripted_fn = torch.jit.script(f)

    tensor, pil_img = _create_data(26, 34, channels, device=device)
    # set seed to reproduce the same transformation for tensor and PIL image
    torch.manual_seed(12)
    transformed_tensor = f(tensor)
    torch.manual_seed(12)
    transformed_pil_img = f(pil_img)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor.float(), transformed_pil_img, **match_kwargs)

    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
    assert_equal(transformed_tensor, transformed_tensor_script)

    batch_tensors = _create_data_batch(height=23, width=34, channels=channels, num_samples=4, device=device)
    _test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)

    with get_tmp_dir() as tmp_dir:
        scripted_fn.save(os.path.join(tmp_dir, f"t_{transform_cls.__name__}.pt"))


def _test_op(func, method, device, channels=3, fn_kwargs=None, meth_kwargs=None, test_exact_match=True, **match_kwargs):
    _test_functional_op(func, device, channels, fn_kwargs, test_exact_match=test_exact_match, **match_kwargs)
    _test_class_op(method, device, channels, meth_kwargs, test_exact_match=test_exact_match, **match_kwargs)


def _test_fn_save_load(fn, tmpdir):
    scripted_fn = torch.jit.script(fn)
    p = os.path.join(tmpdir, f"t_op_list_{getattr(fn, '__name__', fn.__class__.__name__)}.pt")
    scripted_fn.save(p)
    _ = torch.jit.load(p)


@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
    "func,method,fn_kwargs,match_kwargs",
    [
        (F.hflip, T.RandomHorizontalFlip, None, {}),
        (F.vflip, T.RandomVerticalFlip, None, {}),
        (F.invert, T.RandomInvert, None, {}),
        (F.posterize, T.RandomPosterize, {"bits": 4}, {}),
        (F.solarize, T.RandomSolarize, {"threshold": 192.0}, {}),
        (F.adjust_sharpness, T.RandomAdjustSharpness, {"sharpness_factor": 2.0}, {}),
        (
            F.autocontrast,
            T.RandomAutocontrast,
            None,
            {"test_exact_match": False, "agg_method": "max", "tol": (1 + 1e-5), "allowed_percentage_diff": 0.05},
        ),
        (F.equalize, T.RandomEqualize, None, {}),
    ],
)
@pytest.mark.parametrize("channels", [1, 3])
def test_random(func, method, device, channels, fn_kwargs, match_kwargs):
    _test_op(func, method, device, channels, fn_kwargs, fn_kwargs, **match_kwargs)


@pytest.mark.parametrize("seed", range(10))
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("channels", [1, 3])
class TestColorJitter:
    @pytest.fixture(autouse=True)
    def set_random_seed(self, seed):
        torch.random.manual_seed(seed)

    @pytest.mark.parametrize("brightness", [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]])
    def test_color_jitter_brightness(self, brightness, device, channels):
        tol = 1.0 + 1e-10
        meth_kwargs = {"brightness": brightness}
        _test_class_op(
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
151
152
        )

limm's avatar
limm committed
153
154
155
156
157
158
159
160
161
162
163
164
    @pytest.mark.parametrize("contrast", [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]])
    def test_color_jitter_contrast(self, contrast, device, channels):
        tol = 1.0 + 1e-10
        meth_kwargs = {"contrast": contrast}
        _test_class_op(
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
165
166
        )

limm's avatar
limm committed
167
168
169
170
171
172
173
174
175
176
177
178
    @pytest.mark.parametrize("saturation", [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]])
    def test_color_jitter_saturation(self, saturation, device, channels):
        tol = 1.0 + 1e-10
        meth_kwargs = {"saturation": saturation}
        _test_class_op(
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
179
180
        )

limm's avatar
limm committed
181
182
183
184
185
186
187
188
189
190
191
192
    @pytest.mark.parametrize("hue", [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]])
    def test_color_jitter_hue(self, hue, device, channels):
        meth_kwargs = {"hue": hue}
        _test_class_op(
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=16.1,
            agg_method="max",
            channels=channels,
        )
193

limm's avatar
limm committed
194
    def test_color_jitter_all(self, device, channels):
195
196
        # All 4 parameters together
        meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
limm's avatar
limm committed
197
198
199
200
201
202
203
204
        _test_class_op(
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=12.1,
            agg_method="max",
            channels=channels,
vfdev's avatar
vfdev committed
205
206
        )

207

limm's avatar
limm committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("m", ["constant", "edge", "reflect", "symmetric"])
@pytest.mark.parametrize("mul", [1, -1])
def test_pad(m, mul, device):
    fill = 127 if m == "constant" else 0

    # Test functional.pad (PIL and Tensor) with padding as single int
    _test_functional_op(F.pad, fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m}, device=device)
    # Test functional.pad and transforms.Pad with padding as [int, ]
    fn_kwargs = meth_kwargs = {
        "padding": [mul * 2],
        "fill": fill,
        "padding_mode": m,
    }
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
    # Test functional.pad and transforms.Pad with padding as list
    fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
    # Test functional.pad and transforms.Pad with padding as tuple
    fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)


@pytest.mark.parametrize("device", cpu_and_cuda())
def test_crop(device):
    fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
    # Test transforms.RandomCrop with size and padding as tuple
    meth_kwargs = {
        "size": (4, 5),
        "padding": (4, 4),
        "pad_if_needed": True,
    }
    _test_op(F.crop, T.RandomCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)

    # Test transforms.functional.crop including outside the image area
    fn_kwargs = {"top": -2, "left": 3, "height": 4, "width": 5}  # top
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 1, "left": -3, "height": 4, "width": 5}  # left
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 7, "left": 3, "height": 4, "width": 5}  # bottom
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 3, "left": 8, "height": 4, "width": 5}  # right
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": -3, "left": -3, "height": 15, "width": 15}  # all
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)


@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
    "padding_config",
    [
        {"padding_mode": "constant", "fill": 0},
        {"padding_mode": "constant", "fill": 10},
        {"padding_mode": "edge"},
        {"padding_mode": "reflect"},
    ],
)
@pytest.mark.parametrize("pad_if_needed", [True, False])
@pytest.mark.parametrize("padding", [[5], [5, 4], [1, 2, 3, 4]])
@pytest.mark.parametrize("size", [5, [5], [6, 6]])
def test_random_crop(size, padding, pad_if_needed, padding_config, device):
    config = dict(padding_config)
    config["size"] = size
    config["padding"] = padding
    config["pad_if_needed"] = pad_if_needed
    _test_class_op(T.RandomCrop, device, meth_kwargs=config)


def test_random_crop_save_load(tmpdir):
    fn = T.RandomCrop(32, [4], pad_if_needed=True)
    _test_fn_save_load(fn, tmpdir)


@pytest.mark.parametrize("device", cpu_and_cuda())
def test_center_crop(device, tmpdir):
    fn_kwargs = {"output_size": (4, 5)}
    meth_kwargs = {"size": (4, 5)}
    _test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
    fn_kwargs = {"output_size": (5,)}
    meth_kwargs = {"size": (5,)}
    _test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
    tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=device)
    # Test torchscript of transforms.CenterCrop with size as int
    f = T.CenterCrop(size=5)
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as [int, ]
    f = T.CenterCrop(size=[5])
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as tuple
    f = T.CenterCrop(size=(6, 6))
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)


def test_center_crop_save_load(tmpdir):
    fn = T.CenterCrop(size=[5])
    _test_fn_save_load(fn, tmpdir)


@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
    "fn, method, out_length",
    [
        # test_five_crop
        (F.five_crop, T.FiveCrop, 5),
        # test_ten_crop
        (F.ten_crop, T.TenCrop, 10),
    ],
)
@pytest.mark.parametrize("size", [(5,), [5], (4, 5), [4, 5]])
def test_x_crop(fn, method, out_length, size, device):
    meth_kwargs = fn_kwargs = {"size": size}
    scripted_fn = torch.jit.script(fn)

    tensor, pil_img = _create_data(height=20, width=20, device=device)
    transformed_t_list = fn(tensor, **fn_kwargs)
    transformed_p_list = fn(pil_img, **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_p_list)
    assert len(transformed_t_list) == out_length
    for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img)

    transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_t_list_script)
    assert len(transformed_t_list_script) == out_length
    for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
        assert_equal(transformed_tensor, transformed_tensor_script)
343

limm's avatar
limm committed
344
345
346
347
348
    # test for class interface
    fn = method(**meth_kwargs)
    scripted_fn = torch.jit.script(fn)
    output = scripted_fn(tensor)
    assert len(output) == len(transformed_t_list_script)
349

limm's avatar
limm committed
350
351
352
353
    # test on batch of tensors
    batch_tensors = _create_data_batch(height=23, width=34, channels=3, num_samples=4, device=device)
    torch.manual_seed(12)
    transformed_batch_list = fn(batch_tensors)
vfdev's avatar
vfdev committed
354

limm's avatar
limm committed
355
356
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
357
        torch.manual_seed(12)
limm's avatar
limm committed
358
359
360
        transformed_img_list = fn(img_tensor)
        for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
            assert_equal(transformed_img, transformed_batch[i, ...])
vfdev's avatar
vfdev committed
361
362


limm's avatar
limm committed
363
364
365
366
367
@pytest.mark.parametrize("method", ["FiveCrop", "TenCrop"])
def test_x_crop_save_load(method, tmpdir):
    fn = getattr(T, method)(size=[5])
    _test_fn_save_load(fn, tmpdir)

368

limm's avatar
limm committed
369
370
371
class TestResize:
    @pytest.mark.parametrize("size", [32, 34, 35, 36, 38])
    def test_resize_int(self, size):
372
373
        # TODO: Minimal check for bug-fix, improve this later
        x = torch.rand(3, 32, 46)
limm's avatar
limm committed
374
        t = T.Resize(size=size, antialias=True)
375
376
377
        y = t(x)
        # If size is an int, smaller edge of the image will be matched to this number.
        # i.e, if height > width, then image will be rescaled to (size * height / width, size).
limm's avatar
limm committed
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
        assert isinstance(y, torch.Tensor)
        assert y.shape[1] == size
        assert y.shape[2] == int(size * 46 / 32)

    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("dt", [None, torch.float32, torch.float64])
    @pytest.mark.parametrize("size", [[32], [32, 32], (32, 32), [34, 35]])
    @pytest.mark.parametrize("max_size", [None, 35, 1000])
    @pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC, NEAREST, NEAREST_EXACT])
    def test_resize_scripted(self, dt, size, max_size, interpolation, device):
        tensor, _ = _create_data(height=34, width=36, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

        if dt is not None:
            # This is a trivial cast to float of uint8 data to test all cases
            tensor = tensor.to(dt)
        if max_size is not None and len(size) != 1:
            pytest.skip("Size should be an int or a sequence of length 1 if max_size is specified")

        transform = T.Resize(size=size, interpolation=interpolation, max_size=max_size, antialias=True)
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

    def test_resize_save_load(self, tmpdir):
        fn = T.Resize(size=[32], antialias=True)
        _test_fn_save_load(fn, tmpdir)

    @pytest.mark.parametrize("device", cpu_and_cuda())
    @pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
    @pytest.mark.parametrize("ratio", [(0.75, 1.333), [0.75, 1.333]])
    @pytest.mark.parametrize("size", [(32,), [44], [32], [32, 32], (32, 32), [44, 55]])
    @pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR, BICUBIC, NEAREST_EXACT])
    @pytest.mark.parametrize("antialias", [None, True, False])
    def test_resized_crop(self, scale, ratio, size, interpolation, antialias, device):

        if antialias and interpolation in {NEAREST, NEAREST_EXACT}:
            pytest.skip(f"Can not resize if interpolation mode is {interpolation} and antialias=True")

        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
        transform = T.RandomResizedCrop(
            size=size, scale=scale, ratio=ratio, interpolation=interpolation, antialias=antialias
421
        )
limm's avatar
limm committed
422
423
424
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
425

limm's avatar
limm committed
426
427
428
    def test_resized_crop_save_load(self, tmpdir):
        fn = T.RandomResizedCrop(size=[32], antialias=True)
        _test_fn_save_load(fn, tmpdir)
429
430


limm's avatar
limm committed
431
432
433
434
435
def _test_random_affine_helper(device, **kwargs):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
    transform = T.RandomAffine(**kwargs)
    s_transform = torch.jit.script(transform)
436

limm's avatar
limm committed
437
438
    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
439

440

limm's avatar
limm committed
441
442
443
def test_random_affine_save_load(tmpdir):
    fn = T.RandomAffine(degrees=45.0)
    _test_fn_save_load(fn, tmpdir)
444

445

limm's avatar
limm committed
446
447
448
449
450
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("shear", [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]])
def test_random_affine_shear(device, interpolation, shear):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, shear=shear)
451
452


limm's avatar
limm committed
453
454
455
456
457
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
def test_random_affine_scale(device, interpolation, scale):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, scale=scale)
458
459


limm's avatar
limm committed
460
461
462
463
464
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("translate", [(0.1, 0.2), [0.2, 0.1]])
def test_random_affine_translate(device, interpolation, translate):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, translate=translate)
465
466


limm's avatar
limm committed
467
468
469
470
471
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
def test_random_affine_degrees(device, interpolation, degrees):
    _test_random_affine_helper(device, degrees=degrees, interpolation=interpolation)
472

473

limm's avatar
limm committed
474
475
476
477
478
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
def test_random_affine_fill(device, interpolation, fill):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, fill=fill)
479
480


limm's avatar
limm committed
481
482
483
484
485
486
487
488
489
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("center", [(0, 0), [10, 10], None, (56, 44)])
@pytest.mark.parametrize("expand", [True, False])
@pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
def test_random_rotate(device, center, expand, degrees, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
490

limm's avatar
limm committed
491
492
    transform = T.RandomRotation(degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill)
    s_transform = torch.jit.script(transform)
493

limm's avatar
limm committed
494
495
    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
496

497

limm's avatar
limm committed
498
499
500
def test_random_rotate_save_load(tmpdir):
    fn = T.RandomRotation(degrees=45.0)
    _test_fn_save_load(fn, tmpdir)
501
502


limm's avatar
limm committed
503
504
505
506
507
508
509
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("distortion_scale", np.linspace(0.1, 1.0, num=20))
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
def test_random_perspective(device, distortion_scale, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
510

limm's avatar
limm committed
511
512
    transform = T.RandomPerspective(distortion_scale=distortion_scale, interpolation=interpolation, fill=fill)
    s_transform = torch.jit.script(transform)
513

limm's avatar
limm committed
514
515
    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
516

vfdev's avatar
vfdev committed
517

limm's avatar
limm committed
518
519
520
def test_random_perspective_save_load(tmpdir):
    fn = T.RandomPerspective()
    _test_fn_save_load(fn, tmpdir)
vfdev's avatar
vfdev committed
521
522


limm's avatar
limm committed
523
524
525
526
527
528
529
530
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
    "Klass, meth_kwargs",
    [(T.Grayscale, {"num_output_channels": 1}), (T.Grayscale, {"num_output_channels": 3}), (T.RandomGrayscale, {})],
)
def test_to_grayscale(device, Klass, meth_kwargs):
    tol = 1.0 + 1e-10
    _test_class_op(Klass, meth_kwargs=meth_kwargs, test_exact_match=False, device=device, tol=tol, agg_method="max")
vfdev's avatar
vfdev committed
531
532


limm's avatar
limm committed
533
534
535
536
537
538
@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("in_dtype", int_dtypes() + float_dtypes())
@pytest.mark.parametrize("out_dtype", int_dtypes() + float_dtypes())
def test_convert_image_dtype(device, in_dtype, out_dtype):
    tensor, _ = _create_data(26, 34, device=device)
    batch_tensors = torch.rand(4, 3, 44, 56, device=device)
539

limm's avatar
limm committed
540
541
    in_tensor = tensor.to(in_dtype)
    in_batch_tensors = batch_tensors.to(in_dtype)
542

limm's avatar
limm committed
543
544
    fn = T.ConvertImageDtype(dtype=out_dtype)
    scripted_fn = torch.jit.script(fn)
545

limm's avatar
limm committed
546
547
548
549
550
551
552
553
    if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or (
        in_dtype == torch.float64 and out_dtype == torch.int64
    ):
        with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
            _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
        with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
            _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
        return
554

limm's avatar
limm committed
555
556
    _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
557
558


limm's avatar
limm committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
def test_convert_image_dtype_save_load(tmpdir):
    fn = T.ConvertImageDtype(dtype=torch.uint8)
    _test_fn_save_load(fn, tmpdir)


@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("policy", [policy for policy in T.AutoAugmentPolicy])
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
def test_autoaugment(device, policy, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.AutoAugment(policy=policy, fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("num_ops", [1, 2, 3])
@pytest.mark.parametrize("magnitude", [7, 9, 11])
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
def test_randaugment(device, num_ops, magnitude, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
def test_trivialaugmentwide(device, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.TrivialAugmentWide(fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
def test_augmix(device, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    class DeterministicAugMix(T.AugMix):
        def _sample_dirichlet(self, params: torch.Tensor) -> torch.Tensor:
            # patch the method to ensure that the order of rand calls doesn't affect the outcome
            return params.softmax(dim=-1)

    transform = DeterministicAugMix(fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


@pytest.mark.parametrize("augmentation", [T.AutoAugment, T.RandAugment, T.TrivialAugmentWide, T.AugMix])
def test_autoaugment_save_load(augmentation, tmpdir):
    fn = augmentation()
    _test_fn_save_load(fn, tmpdir)


@pytest.mark.parametrize("interpolation", [F.InterpolationMode.NEAREST, F.InterpolationMode.BILINEAR])
@pytest.mark.parametrize("mode", ["X", "Y"])
def test_autoaugment__op_apply_shear(interpolation, mode):
    # We check that torchvision's implementation of shear is equivalent
    # to official CIFAR10 autoaugment implementation:
    # https://github.com/tensorflow/models/blob/885fda091c46c59d6c7bb5c7e760935eacc229da/research/autoaugment/augmentation_transforms.py#L273-L290
    image_size = 32

    def shear(pil_img, level, mode, resample):
        if mode == "X":
            matrix = (1, level, 0, 0, 1, 0)
        elif mode == "Y":
            matrix = (1, 0, 0, level, 1, 0)
        return pil_img.transform((image_size, image_size), PIL.Image.AFFINE, matrix, resample=resample)

    t_img, pil_img = _create_data(image_size, image_size)

    resample_pil = {
        F.InterpolationMode.NEAREST: PIL.Image.NEAREST,
        F.InterpolationMode.BILINEAR: PIL.Image.BILINEAR,
    }[interpolation]

    level = 0.3
    expected_out = shear(pil_img, level, mode=mode, resample=resample_pil)
654

limm's avatar
limm committed
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
    # Check pil output vs expected pil
    out = _apply_op(pil_img, op_name=f"Shear{mode}", magnitude=level, interpolation=interpolation, fill=0)
    assert out == expected_out

    if interpolation == F.InterpolationMode.BILINEAR:
        # We skip bilinear mode for tensors as
        # affine transformation results are not exactly the same
        # between tensors and pil images
        # MAE as around 1.40
        # Max Abs error can be 163 or 170
        return

    # Check tensor output vs expected pil
    out = _apply_op(t_img, op_name=f"Shear{mode}", magnitude=level, interpolation=interpolation, fill=0)
    _assert_approx_equal_tensor_to_pil(out, expected_out)


@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
    "config",
    [
        {},
        {"value": 1},
        {"value": 0.2},
        {"value": "random"},
        {"value": (1, 1, 1)},
        {"value": (0.2, 0.2, 0.2)},
        {"value": [1, 1, 1]},
        {"value": [0.2, 0.2, 0.2]},
        {"value": "random", "ratio": (0.1, 0.2)},
    ],
)
def test_random_erasing(device, config):
    tensor, _ = _create_data(24, 32, channels=3, device=device)
    batch_tensors = torch.rand(4, 3, 44, 56, device=device)

    fn = T.RandomErasing(**config)
    scripted_fn = torch.jit.script(fn)
    _test_transform_vs_scripted(fn, scripted_fn, tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)


def test_random_erasing_save_load(tmpdir):
    fn = T.RandomErasing(value=0.2)
    _test_fn_save_load(fn, tmpdir)


def test_random_erasing_with_invalid_data():
    img = torch.rand(3, 60, 60)
    # Test Set 0: invalid value
    random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
    with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value or 3"):
        random_erasing(img)


@pytest.mark.parametrize("device", cpu_and_cuda())
def test_normalize(device, tmpdir):
    fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    tensor, _ = _create_data(26, 34, device=device)

    with pytest.raises(TypeError, match="Input tensor should be a float tensor"):
        fn(tensor)

    batch_tensors = torch.rand(4, 3, 44, 56, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0
    # test for class interface
    scripted_fn = torch.jit.script(fn)
722

limm's avatar
limm committed
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
    _test_transform_vs_scripted(fn, scripted_fn, tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

    scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))


@pytest.mark.parametrize("device", cpu_and_cuda())
def test_linear_transformation(device, tmpdir):
    c, h, w = 3, 24, 32

    tensor, _ = _create_data(h, w, channels=c, device=device)

    matrix = torch.rand(c * h * w, c * h * w, device=device)
    mean_vector = torch.rand(c * h * w, device=device)

    fn = T.LinearTransformation(matrix, mean_vector)
    scripted_fn = torch.jit.script(fn)

    _test_transform_vs_scripted(fn, scripted_fn, tensor)
742

limm's avatar
limm committed
743
744
745
746
747
748
749
750
751
752
    batch_tensors = torch.rand(4, c, h, w, device=device)
    # We skip some tests from _test_transform_vs_scripted_on_batch as
    # results for scripted and non-scripted transformations are not exactly the same
    torch.manual_seed(12)
    transformed_batch = fn(batch_tensors)
    torch.manual_seed(12)
    s_transformed_batch = scripted_fn(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch)

    scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
753

754

limm's avatar
limm committed
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_compose(device):
    tensor, _ = _create_data(26, 34, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0
    transforms = T.Compose(
        [
            T.CenterCrop(10),
            T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ]
    )
    s_transforms = torch.nn.Sequential(*transforms.transforms)

    scripted_fn = torch.jit.script(s_transforms)
    torch.manual_seed(12)
    transformed_tensor = transforms(tensor)
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
    assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")

    t = T.Compose(
        [
            lambda x: x,
        ]
    )
    with pytest.raises(RuntimeError, match="cannot call a value of type 'Tensor'"):
        torch.jit.script(t)
781
782


limm's avatar
limm committed
783
784
785
786
@pytest.mark.parametrize("device", cpu_and_cuda())
def test_random_apply(device):
    tensor, _ = _create_data(26, 34, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0
787

limm's avatar
limm committed
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
    transforms = T.RandomApply(
        [
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ],
        p=0.4,
    )
    s_transforms = T.RandomApply(
        torch.nn.ModuleList(
            [
                T.RandomHorizontalFlip(),
                T.ColorJitter(),
            ]
        ),
        p=0.4,
    )

    scripted_fn = torch.jit.script(s_transforms)
    torch.manual_seed(12)
    transformed_tensor = transforms(tensor)
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
    assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")

    if device == "cpu":
        # Can't check this twice, otherwise
        # "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
        transforms = T.RandomApply(
            [
                T.ColorJitter(),
            ],
            p=0.3,
        )
        with pytest.raises(RuntimeError, match="Module 'RandomApply' has no attribute 'transforms'"):
            torch.jit.script(transforms)


@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
    "meth_kwargs",
    [
        {"kernel_size": 3, "sigma": 0.75},
        {"kernel_size": 23, "sigma": [0.1, 2.0]},
        {"kernel_size": 23, "sigma": (0.1, 2.0)},
        {"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
        {"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
        {"kernel_size": [23], "sigma": 0.75},
    ],
)
@pytest.mark.parametrize("channels", [1, 3])
def test_gaussian_blur(device, channels, meth_kwargs):
    if all(
        [
            device == "cuda",
            channels == 1,
            meth_kwargs["kernel_size"] in [23, [23]],
            torch.version.cuda == "11.3",
            sys.platform in ("win32", "cygwin"),
        ]
    ):
        pytest.skip("Fails on Windows, see https://github.com/pytorch/vision/issues/5464")

    tol = 1.0 + 1e-10
    torch.manual_seed(12)
    _test_class_op(
        T.GaussianBlur,
        meth_kwargs=meth_kwargs,
        channels=channels,
        test_exact_match=False,
        device=device,
        agg_method="max",
        tol=tol,
    )


@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize(
    "fill",
    [
        1,
        1.0,
        [1],
        [1.0],
        (1,),
        (1.0,),
        [1, 2, 3],
        [1.0, 2.0, 3.0],
        (1, 2, 3),
        (1.0, 2.0, 3.0),
    ],
)
@pytest.mark.parametrize("channels", [1, 3])
def test_elastic_transform(device, channels, fill):
    if isinstance(fill, (list, tuple)) and len(fill) > 1 and channels == 1:
        # For this the test would correctly fail, since the number of channels in the image does not match `fill`.
        # Thus, this is not an issue in the transform, but rather a problem of parametrization that just gives the
        # product of `fill` and `channels`.
        return

    _test_class_op(
        T.ElasticTransform,
        meth_kwargs=dict(fill=fill),
        channels=channels,
        device=device,
    )