test_image.py 30.1 KB
Newer Older
limm's avatar
limm committed
1
import concurrent.futures
2
import glob
3
4
import io
import os
limm's avatar
limm committed
5
import re
6
7
import sys
from pathlib import Path
8

9
import numpy as np
limm's avatar
limm committed
10
11
import pytest
import requests
12
import torch
13
import torchvision.transforms.functional as F
limm's avatar
limm committed
14
15
from common_utils import assert_equal, cpu_and_cuda, IN_OSS_CI, needs_cuda
from PIL import __version__ as PILLOW_VERSION, Image, ImageOps, ImageSequence
16
from torchvision.io.image import (
limm's avatar
limm committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
    _read_png_16,
    decode_gif,
    decode_image,
    decode_jpeg,
    decode_png,
    encode_jpeg,
    encode_png,
    ImageReadMode,
    read_file,
    read_image,
    write_file,
    write_jpeg,
    write_png,
)
Francisco Massa's avatar
Francisco Massa committed
31

32
IMAGE_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
33
34
FAKEDATA_DIR = os.path.join(IMAGE_ROOT, "fakedata")
IMAGE_DIR = os.path.join(FAKEDATA_DIR, "imagefolder")
limm's avatar
limm committed
35
36
DAMAGED_JPEG = os.path.join(IMAGE_ROOT, "damaged_jpeg")
DAMAGED_PNG = os.path.join(IMAGE_ROOT, "damaged_png")
37
ENCODE_JPEG = os.path.join(IMAGE_ROOT, "encode_jpeg")
limm's avatar
limm committed
38
39
40
41
42
INTERLACED_PNG = os.path.join(IMAGE_ROOT, "interlaced_png")
TOOSMALL_PNG = os.path.join(IMAGE_ROOT, "toosmall_png")
IS_WINDOWS = sys.platform in ("win32", "cygwin")
IS_MACOS = sys.platform == "darwin"
PILLOW_VERSION = tuple(int(x) for x in PILLOW_VERSION.split("."))
43
44
45
46
47
48
49
50


def _get_safe_image_name(name):
    # Used when we need to change the pytest "id" for an "image path" parameter.
    # If we don't, the test id (i.e. its name) will contain the whole path to the image, which is machine-specific,
    # and this creates issues when the test is running in a different machine than where it was collected
    # (typically, in fb internal infra)
    return name.split(os.path.sep)[-1]
51
52
53
54


def get_images(directory, img_ext):
    assert os.path.isdir(directory)
limm's avatar
limm committed
55
    image_paths = glob.glob(directory + f"/**/*{img_ext}", recursive=True)
56
    for path in image_paths:
limm's avatar
limm committed
57
        if path.split(os.sep)[-2] not in ["damaged_jpeg", "jpeg_write"]:
58
            yield path
59
60


61
62
63
64
65
66
67
68
69
70
71
72
73
def pil_read_image(img_path):
    with Image.open(img_path) as img:
        return torch.from_numpy(np.array(img))


def normalize_dimensions(img_pil):
    if len(img_pil.shape) == 3:
        img_pil = img_pil.permute(2, 0, 1)
    else:
        img_pil = img_pil.unsqueeze(0)
    return img_pil


limm's avatar
limm committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")],
)
@pytest.mark.parametrize(
    "pil_mode, mode",
    [
        (None, ImageReadMode.UNCHANGED),
        ("L", ImageReadMode.GRAY),
        ("RGB", ImageReadMode.RGB),
    ],
)
@pytest.mark.parametrize("scripted", (False, True))
@pytest.mark.parametrize("decode_fun", (decode_jpeg, decode_image))
def test_decode_jpeg(img_path, pil_mode, mode, scripted, decode_fun):

    with Image.open(img_path) as img:
        is_cmyk = img.mode == "CMYK"
        if pil_mode is not None:
            img = img.convert(pil_mode)
        img_pil = torch.from_numpy(np.array(img))
        if is_cmyk and mode == ImageReadMode.UNCHANGED:
            # flip the colors to match libjpeg
            img_pil = 255 - img_pil

    img_pil = normalize_dimensions(img_pil)
    data = read_file(img_path)
    if scripted:
        decode_fun = torch.jit.script(decode_fun)
    img_ljpeg = decode_fun(data, mode=mode)

    # Permit a small variation on pixel values to account for implementation
    # differences between Pillow and LibJPEG.
    abs_mean_diff = (img_ljpeg.type(torch.float32) - img_pil).abs().mean().item()
    assert abs_mean_diff < 2


@pytest.mark.parametrize("codec", ["png", "jpeg"])
@pytest.mark.parametrize("orientation", [1, 2, 3, 4, 5, 6, 7, 8, 0])
def test_decode_with_exif_orientation(tmpdir, codec, orientation):
    fp = os.path.join(tmpdir, f"exif_oriented_{orientation}.{codec}")
    t = torch.randint(0, 256, size=(3, 256, 257), dtype=torch.uint8)
    im = F.to_pil_image(t)
    exif = im.getexif()
    exif[0x0112] = orientation  # set exif orientation
    im.save(fp, codec.upper(), exif=exif.tobytes())

    data = read_file(fp)
    output = decode_image(data, apply_exif_orientation=True)

    pimg = Image.open(fp)
    pimg = ImageOps.exif_transpose(pimg)

    expected = F.pil_to_tensor(pimg)
    torch.testing.assert_close(expected, output)


@pytest.mark.parametrize("size", [65533, 1, 7, 10, 23, 33])
def test_invalid_exif(tmpdir, size):
    # Inspired from a PIL test:
    # https://github.com/python-pillow/Pillow/blob/8f63748e50378424628155994efd7e0739a4d1d1/Tests/test_file_jpeg.py#L299
    fp = os.path.join(tmpdir, "invalid_exif.jpg")
    t = torch.randint(0, 256, size=(3, 256, 257), dtype=torch.uint8)
    im = F.to_pil_image(t)
    im.save(fp, "JPEG", exif=b"1" * size)

    data = read_file(fp)
    output = decode_image(data, apply_exif_orientation=True)

    pimg = Image.open(fp)
    pimg = ImageOps.exif_transpose(pimg)

    expected = F.pil_to_tensor(pimg)
    torch.testing.assert_close(expected, output)


def test_decode_jpeg_errors():
    with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
        decode_jpeg(torch.empty((100, 1), dtype=torch.uint8))

    with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
        decode_jpeg(torch.empty((100,), dtype=torch.float16))

    with pytest.raises(RuntimeError, match="Not a JPEG file"):
        decode_jpeg(torch.empty((100), dtype=torch.uint8))


def test_decode_bad_huffman_images():
    # sanity check: make sure we can decode the bad Huffman encoding
    bad_huff = read_file(os.path.join(DAMAGED_JPEG, "bad_huffman.jpg"))
    decode_jpeg(bad_huff)


@pytest.mark.parametrize(
    "img_path",
    [
        pytest.param(truncated_image, id=_get_safe_image_name(truncated_image))
        for truncated_image in glob.glob(os.path.join(DAMAGED_JPEG, "corrupt*.jpg"))
    ],
)
def test_damaged_corrupt_images(img_path):
    # Truncated images should raise an exception
    data = read_file(img_path)
    if "corrupt34" in img_path:
        match_message = "Image is incomplete or truncated"
    else:
        match_message = "Unsupported marker type"
    with pytest.raises(RuntimeError, match=match_message):
        decode_jpeg(data)


@pytest.mark.parametrize(
    "img_path",
    [pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(FAKEDATA_DIR, ".png")],
)
@pytest.mark.parametrize(
    "pil_mode, mode",
    [
        (None, ImageReadMode.UNCHANGED),
        ("L", ImageReadMode.GRAY),
        ("LA", ImageReadMode.GRAY_ALPHA),
        ("RGB", ImageReadMode.RGB),
        ("RGBA", ImageReadMode.RGB_ALPHA),
    ],
)
@pytest.mark.parametrize("scripted", (False, True))
@pytest.mark.parametrize("decode_fun", (decode_png, decode_image))
def test_decode_png(img_path, pil_mode, mode, scripted, decode_fun):

    if scripted:
        decode_fun = torch.jit.script(decode_fun)

    with Image.open(img_path) as img:
        if pil_mode is not None:
            img = img.convert(pil_mode)
        img_pil = torch.from_numpy(np.array(img))

    img_pil = normalize_dimensions(img_pil)

    if img_path.endswith("16.png"):
        # 16 bits image decoding is supported, but only as a private API
        # FIXME: see https://github.com/pytorch/vision/issues/4731 for potential solutions to making it public
        with pytest.raises(RuntimeError, match="At most 8-bit PNG images are supported"):
            data = read_file(img_path)
            img_lpng = decode_fun(data, mode=mode)

        img_lpng = _read_png_16(img_path, mode=mode)
        assert img_lpng.dtype == torch.int32
        # PIL converts 16 bits pngs in uint8
        img_lpng = torch.round(img_lpng / (2**16 - 1) * 255).to(torch.uint8)
    else:
        data = read_file(img_path)
        img_lpng = decode_fun(data, mode=mode)

    tol = 0 if pil_mode is None else 1

    if PILLOW_VERSION >= (8, 3) and pil_mode == "LA":
        # Avoid checking the transparency channel until
        # https://github.com/python-pillow/Pillow/issues/5593#issuecomment-878244910
        # is fixed.
        # TODO: remove once fix is released in PIL. Should be > 8.3.1.
        img_lpng, img_pil = img_lpng[0], img_pil[0]

    torch.testing.assert_close(img_lpng, img_pil, atol=tol, rtol=0)


def test_decode_png_errors():
    with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
        decode_png(torch.empty((), dtype=torch.uint8))
    with pytest.raises(RuntimeError, match="Content is not png"):
        decode_png(torch.randint(3, 5, (300,), dtype=torch.uint8))
    with pytest.raises(RuntimeError, match="Out of bound read in decode_png"):
        decode_png(read_file(os.path.join(DAMAGED_PNG, "sigsegv.png")))
    with pytest.raises(RuntimeError, match="Content is too small for png"):
        decode_png(read_file(os.path.join(TOOSMALL_PNG, "heapbof.png")))


@pytest.mark.parametrize(
    "img_path",
    [pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(IMAGE_DIR, ".png")],
)
@pytest.mark.parametrize("scripted", (True, False))
def test_encode_png(img_path, scripted):
    pil_image = Image.open(img_path)
    img_pil = torch.from_numpy(np.array(pil_image))
    img_pil = img_pil.permute(2, 0, 1)
    encode = torch.jit.script(encode_png) if scripted else encode_png
    png_buf = encode(img_pil, compression_level=6)

    rec_img = Image.open(io.BytesIO(bytes(png_buf.tolist())))
    rec_img = torch.from_numpy(np.array(rec_img))
    rec_img = rec_img.permute(2, 0, 1)

    assert_equal(img_pil, rec_img)


def test_encode_png_errors():
    with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
        encode_png(torch.empty((3, 100, 100), dtype=torch.float32))

    with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"):
        encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=-1)

    with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"):
        encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=10)

    with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
        encode_png(torch.empty((5, 100, 100), dtype=torch.uint8))


@pytest.mark.parametrize(
    "img_path",
    [pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(IMAGE_DIR, ".png")],
)
@pytest.mark.parametrize("scripted", (True, False))
def test_write_png(img_path, tmpdir, scripted):
    pil_image = Image.open(img_path)
    img_pil = torch.from_numpy(np.array(pil_image))
    img_pil = img_pil.permute(2, 0, 1)

    filename, _ = os.path.splitext(os.path.basename(img_path))
    torch_png = os.path.join(tmpdir, f"{filename}_torch.png")
    write = torch.jit.script(write_png) if scripted else write_png
    write(img_pil, torch_png, compression_level=6)
    saved_image = torch.from_numpy(np.array(Image.open(torch_png)))
    saved_image = saved_image.permute(2, 0, 1)

    assert_equal(img_pil, saved_image)


def test_read_image():
    # Just testing torchcsript, the functionality is somewhat tested already in other tests.
    path = next(get_images(IMAGE_ROOT, ".jpg"))
    out = read_image(path)
    out_scripted = torch.jit.script(read_image)(path)
    torch.testing.assert_close(out, out_scripted, atol=0, rtol=0)


@pytest.mark.parametrize("scripted", (True, False))
def test_read_file(tmpdir, scripted):
    fname, content = "test1.bin", b"TorchVision\211\n"
    fpath = os.path.join(tmpdir, fname)
    with open(fpath, "wb") as f:
        f.write(content)

    fun = torch.jit.script(read_file) if scripted else read_file
    data = fun(fpath)
    expected = torch.tensor(list(content), dtype=torch.uint8)
    os.unlink(fpath)
    assert_equal(data, expected)

    with pytest.raises(RuntimeError, match="No such file or directory: 'tst'"):
        read_file("tst")


def test_read_file_non_ascii(tmpdir):
    fname, content = "日本語(Japanese).bin", b"TorchVision\211\n"
    fpath = os.path.join(tmpdir, fname)
    with open(fpath, "wb") as f:
        f.write(content)

    data = read_file(fpath)
    expected = torch.tensor(list(content), dtype=torch.uint8)
    os.unlink(fpath)
    assert_equal(data, expected)


@pytest.mark.parametrize("scripted", (True, False))
def test_write_file(tmpdir, scripted):
    fname, content = "test1.bin", b"TorchVision\211\n"
    fpath = os.path.join(tmpdir, fname)
    content_tensor = torch.tensor(list(content), dtype=torch.uint8)
    write = torch.jit.script(write_file) if scripted else write_file
    write(fpath, content_tensor)

    with open(fpath, "rb") as f:
        saved_content = f.read()
    os.unlink(fpath)
    assert content == saved_content


def test_write_file_non_ascii(tmpdir):
    fname, content = "日本語(Japanese).bin", b"TorchVision\211\n"
    fpath = os.path.join(tmpdir, fname)
    content_tensor = torch.tensor(list(content), dtype=torch.uint8)
    write_file(fpath, content_tensor)

    with open(fpath, "rb") as f:
        saved_content = f.read()
    os.unlink(fpath)
    assert content == saved_content


@pytest.mark.parametrize(
    "shape",
    [
        (27, 27),
        (60, 60),
        (105, 105),
    ],
)
def test_read_1_bit_png(shape, tmpdir):
    np_rng = np.random.RandomState(0)
    image_path = os.path.join(tmpdir, f"test_{shape}.png")
    pixels = np_rng.rand(*shape) > 0.5
    img = Image.fromarray(pixels)
    img.save(image_path)
    img1 = read_image(image_path)
    img2 = normalize_dimensions(torch.as_tensor(pixels * 255, dtype=torch.uint8))
    assert_equal(img1, img2)


@pytest.mark.parametrize(
    "shape",
    [
        (27, 27),
        (60, 60),
        (105, 105),
    ],
)
@pytest.mark.parametrize(
    "mode",
    [
        ImageReadMode.UNCHANGED,
        ImageReadMode.GRAY,
    ],
)
def test_read_1_bit_png_consistency(shape, mode, tmpdir):
    np_rng = np.random.RandomState(0)
    image_path = os.path.join(tmpdir, f"test_{shape}.png")
    pixels = np_rng.rand(*shape) > 0.5
    img = Image.fromarray(pixels)
    img.save(image_path)
    img1 = read_image(image_path, mode)
    img2 = read_image(image_path, mode)
    assert_equal(img1, img2)


def test_read_interlaced_png():
    imgs = list(get_images(INTERLACED_PNG, ".png"))
    with Image.open(imgs[0]) as im1, Image.open(imgs[1]) as im2:
        assert not (im1.info.get("interlace") is im2.info.get("interlace"))
    img1 = read_image(imgs[0])
    img2 = read_image(imgs[1])
    assert_equal(img1, img2)
419

420

421
@needs_cuda
limm's avatar
limm committed
422
423
424
425
426
427
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")],
)
@pytest.mark.parametrize("mode", [ImageReadMode.UNCHANGED, ImageReadMode.GRAY, ImageReadMode.RGB])
@pytest.mark.parametrize("scripted", (False, True))
428
def test_decode_jpeg_cuda(mode, img_path, scripted):
limm's avatar
limm committed
429
    if "cmyk" in img_path:
430
        pytest.xfail("Decoding a CMYK jpeg isn't supported")
limm's avatar
limm committed
431

432
433
434
    data = read_file(img_path)
    img = decode_image(data, mode=mode)
    f = torch.jit.script(decode_jpeg) if scripted else decode_jpeg
limm's avatar
limm committed
435
    img_nvjpeg = f(data, mode=mode, device="cuda")
436
437

    # Some difference expected between jpeg implementations
limm's avatar
limm committed
438
439
440
441
442
443
444
445
    assert (img.float() - img_nvjpeg.cpu().float()).abs().mean() < 2


@needs_cuda
def test_decode_image_cuda_raises():
    data = torch.randint(0, 127, size=(255,), device="cuda", dtype=torch.uint8)
    with pytest.raises(RuntimeError):
        decode_image(data)
446
447
448


@needs_cuda
limm's avatar
limm committed
449
@pytest.mark.parametrize("cuda_device", ("cuda", "cuda:0", torch.device("cuda")))
450
451
def test_decode_jpeg_cuda_device_param(cuda_device):
    """Make sure we can pass a string or a torch.device as device param"""
limm's avatar
limm committed
452
453
    path = next(path for path in get_images(IMAGE_ROOT, ".jpg") if "cmyk" not in path)
    data = read_file(path)
454
455
456
457
458
459
460
    decode_jpeg(data, device=cuda_device)


@needs_cuda
def test_decode_jpeg_cuda_errors():
    data = read_file(next(get_images(IMAGE_ROOT, ".jpg")))
    with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
limm's avatar
limm committed
461
        decode_jpeg(data.reshape(-1, 1), device="cuda")
462
    with pytest.raises(RuntimeError, match="input tensor must be on CPU"):
limm's avatar
limm committed
463
        decode_jpeg(data.to("cuda"), device="cuda")
464
    with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
limm's avatar
limm committed
465
        decode_jpeg(data.to(torch.float), device="cuda")
466
    with pytest.raises(RuntimeError, match="Expected a cuda device"):
limm's avatar
limm committed
467
        torch.ops.image.decode_jpeg_cuda(data, ImageReadMode.UNCHANGED.value, "cpu")
468
469


470
471
472
473
474
def test_encode_jpeg_errors():

    with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
        encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32))

limm's avatar
limm committed
475
    with pytest.raises(ValueError, match="Image quality should be a positive number between 1 and 100"):
476
477
        encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=-1)

limm's avatar
limm committed
478
    with pytest.raises(ValueError, match="Image quality should be a positive number between 1 and 100"):
479
480
481
482
483
484
485
486
487
488
489
490
        encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=101)

    with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
        encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8))

    with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
        encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8))

    with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
        encode_jpeg(torch.empty((100, 100), dtype=torch.uint8))


limm's avatar
limm committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
@pytest.mark.skipif(IS_MACOS, reason="https://github.com/pytorch/vision/issues/8031")
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
@pytest.mark.parametrize("scripted", (True, False))
def test_encode_jpeg(img_path, scripted):
    img = read_image(img_path)

    pil_img = F.to_pil_image(img)
    buf = io.BytesIO()
    pil_img.save(buf, format="JPEG", quality=75)

    encoded_jpeg_pil = torch.frombuffer(buf.getvalue(), dtype=torch.uint8)

    encode = torch.jit.script(encode_jpeg) if scripted else encode_jpeg
    for src_img in [img, img.contiguous()]:
        encoded_jpeg_torch = encode(src_img, quality=75)
        assert_equal(encoded_jpeg_torch, encoded_jpeg_pil)


@needs_cuda
def test_encode_jpeg_cuda_device_param():
    path = next(path for path in get_images(IMAGE_ROOT, ".jpg") if "cmyk" not in path)

    data = read_image(path)

    current_device = torch.cuda.current_device()
    current_stream = torch.cuda.current_stream()
    num_devices = torch.cuda.device_count()
    devices = ["cuda", torch.device("cuda")] + [torch.device(f"cuda:{i}") for i in range(num_devices)]
    results = []
    for device in devices:
        print(f"python: device: {device}")
        results.append(encode_jpeg(data.to(device=device)))
    assert len(results) == len(devices)
    for result in results:
        assert torch.all(result.cpu() == results[0].cpu())

    assert current_device == torch.cuda.current_device()
    assert current_stream == torch.cuda.current_stream()


@needs_cuda
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")],
)
@pytest.mark.parametrize("scripted", (False, True))
@pytest.mark.parametrize("contiguous", (False, True))
def test_encode_jpeg_cuda(img_path, scripted, contiguous):
    decoded_image_tv = read_image(img_path)
    encode_fn = torch.jit.script(encode_jpeg) if scripted else encode_jpeg

    if "cmyk" in img_path:
        pytest.xfail("Encoding a CMYK jpeg isn't supported")
    if decoded_image_tv.shape[0] == 1:
        pytest.xfail("Decoding a grayscale jpeg isn't supported")
        # For more detail as to why check out: https://github.com/NVIDIA/cuda-samples/issues/23#issuecomment-559283013
    if contiguous:
        decoded_image_tv = decoded_image_tv[None].contiguous(memory_format=torch.contiguous_format)[0]
    else:
        decoded_image_tv = decoded_image_tv[None].contiguous(memory_format=torch.channels_last)[0]
    encoded_jpeg_cuda_tv = encode_fn(decoded_image_tv.cuda(), quality=75)
    decoded_jpeg_cuda_tv = decode_jpeg(encoded_jpeg_cuda_tv.cpu())

    # the actual encoded bytestreams from libnvjpeg and libjpeg-turbo differ for the same quality
    # instead, we re-decode the encoded image and compare to the original
    abs_mean_diff = (decoded_jpeg_cuda_tv.float() - decoded_image_tv.float()).abs().mean().item()
    assert abs_mean_diff < 3


@pytest.mark.parametrize("device", cpu_and_cuda())
@pytest.mark.parametrize("scripted", (True, False))
@pytest.mark.parametrize("contiguous", (True, False))
def test_encode_jpegs_batch(scripted, contiguous, device):
    if device == "cpu" and IS_MACOS:
        pytest.skip("https://github.com/pytorch/vision/issues/8031")
    decoded_images_tv = []
    for jpeg_path in get_images(IMAGE_ROOT, ".jpg"):
        if "cmyk" in jpeg_path:
            continue
        decoded_image = read_image(jpeg_path)
        if decoded_image.shape[0] == 1:
            continue
        if contiguous:
            decoded_image = decoded_image[None].contiguous(memory_format=torch.contiguous_format)[0]
578
        else:
limm's avatar
limm committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
            decoded_image = decoded_image[None].contiguous(memory_format=torch.channels_last)[0]
        decoded_images_tv.append(decoded_image)

    encode_fn = torch.jit.script(encode_jpeg) if scripted else encode_jpeg

    decoded_images_tv_device = [img.to(device=device) for img in decoded_images_tv]
    encoded_jpegs_tv_device = encode_fn(decoded_images_tv_device, quality=75)
    encoded_jpegs_tv_device = [decode_jpeg(img.cpu()) for img in encoded_jpegs_tv_device]

    for original, encoded_decoded in zip(decoded_images_tv, encoded_jpegs_tv_device):
        c, h, w = original.shape
        abs_mean_diff = (original.float() - encoded_decoded.float()).abs().mean().item()
        assert abs_mean_diff < 3

    # test multithreaded decoding
    # in the current version we prevent this by using a lock but we still want to test it
    num_workers = 10
    with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
        futures = [executor.submit(encode_fn, decoded_images_tv_device) for _ in range(num_workers)]
    encoded_images_threaded = [future.result() for future in futures]
    assert len(encoded_images_threaded) == num_workers
    for encoded_images in encoded_images_threaded:
        assert len(decoded_images_tv_device) == len(encoded_images)
        for i, (encoded_image_cuda, decoded_image_tv) in enumerate(zip(encoded_images, decoded_images_tv_device)):
            # make sure all the threads produce identical outputs
            assert torch.all(encoded_image_cuda == encoded_images_threaded[0][i])

            # make sure the outputs are identical or close enough to baseline
            decoded_cuda_encoded_image = decode_jpeg(encoded_image_cuda.cpu())
            assert decoded_cuda_encoded_image.shape == decoded_image_tv.shape
            assert decoded_cuda_encoded_image.dtype == decoded_image_tv.dtype
            assert (decoded_cuda_encoded_image.cpu().float() - decoded_image_tv.cpu().float()).abs().mean() < 3
611
612


limm's avatar
limm committed
613
614
615
616
@needs_cuda
def test_single_encode_jpeg_cuda_errors():
    with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
        encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32, device="cuda"))
617

limm's avatar
limm committed
618
619
    with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 5"):
        encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8, device="cuda"))
620

limm's avatar
limm committed
621
622
    with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 1"):
        encode_jpeg(torch.empty((1, 100, 100), dtype=torch.uint8, device="cuda"))
623

limm's avatar
limm committed
624
625
    with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
        encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8, device="cuda"))
626

limm's avatar
limm committed
627
628
    with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
        encode_jpeg(torch.empty((100, 100), dtype=torch.uint8, device="cuda"))
629
630


limm's avatar
limm committed
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
@needs_cuda
def test_batch_encode_jpegs_cuda_errors():
    with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
        encode_jpeg(
            [
                torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
                torch.empty((3, 100, 100), dtype=torch.float32, device="cuda"),
            ]
        )

    with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 5"):
        encode_jpeg(
            [
                torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
                torch.empty((5, 100, 100), dtype=torch.uint8, device="cuda"),
            ]
        )

    with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 1"):
        encode_jpeg(
            [
                torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
                torch.empty((1, 100, 100), dtype=torch.uint8, device="cuda"),
            ]
        )

    with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
        encode_jpeg(
            [
                torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
                torch.empty((1, 3, 100, 100), dtype=torch.uint8, device="cuda"),
            ]
        )

    with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
        encode_jpeg(
            [
                torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
                torch.empty((100, 100), dtype=torch.uint8, device="cuda"),
            ]
        )

    with pytest.raises(RuntimeError, match="Input tensor should be on CPU"):
        encode_jpeg(
            [
                torch.empty((3, 100, 100), dtype=torch.uint8, device="cpu"),
                torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
            ]
        )

    with pytest.raises(
        RuntimeError, match="All input tensors must be on the same CUDA device when encoding with nvjpeg"
    ):
        encode_jpeg(
            [
                torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
                torch.empty((3, 100, 100), dtype=torch.uint8, device="cpu"),
            ]
        )

    if torch.cuda.device_count() >= 2:
        with pytest.raises(
            RuntimeError, match="All input tensors must be on the same CUDA device when encoding with nvjpeg"
        ):
            encode_jpeg(
                [
                    torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda:0"),
                    torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda:1"),
                ]
            )

    with pytest.raises(ValueError, match="encode_jpeg requires at least one input tensor when a list is passed"):
        encode_jpeg([])


@pytest.mark.skipif(IS_MACOS, reason="https://github.com/pytorch/vision/issues/8031")
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
@pytest.mark.parametrize("scripted", (True, False))
def test_write_jpeg(img_path, tmpdir, scripted):
    tmpdir = Path(tmpdir)
    img = read_image(img_path)
715
716
    pil_img = F.to_pil_image(img)

limm's avatar
limm committed
717
718
    torch_jpeg = str(tmpdir / "torch.jpg")
    pil_jpeg = str(tmpdir / "pil.jpg")
719

limm's avatar
limm committed
720
721
722
    write = torch.jit.script(write_jpeg) if scripted else write_jpeg
    write(img, torch_jpeg, quality=75)
    pil_img.save(pil_jpeg, quality=75)
723

limm's avatar
limm committed
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
    with open(torch_jpeg, "rb") as f:
        torch_bytes = f.read()

    with open(pil_jpeg, "rb") as f:
        pil_bytes = f.read()

    assert_equal(torch_bytes, pil_bytes)


def test_pathlib_support(tmpdir):
    # Just make sure pathlib.Path is supported where relevant

    jpeg_path = Path(next(get_images(ENCODE_JPEG, ".jpg")))

    read_file(jpeg_path)
    read_image(jpeg_path)

    write_path = Path(tmpdir) / "whatever"
    img = torch.randint(0, 10, size=(3, 4, 4), dtype=torch.uint8)

    write_file(write_path, data=img.flatten())
    write_jpeg(img, write_path)
    write_png(img, write_path)


@pytest.mark.parametrize(
    "name", ("gifgrid", "fire", "porsche", "treescap", "treescap-interlaced", "solid2", "x-trans", "earth")
)
@pytest.mark.parametrize("scripted", (True, False))
def test_decode_gif(tmpdir, name, scripted):
    # Using test images from GIFLIB
    # https://sourceforge.net/p/giflib/code/ci/master/tree/pic/, we assert PIL
    # and torchvision decoded outputs are equal.
    # We're not testing against "welcome2" because PIL and GIFLIB disagee on what
    # the background color should be (likely a difference in the way they handle
    # transparency?)
    # 'earth' image is from wikipedia, licensed under CC BY-SA 3.0
    # https://creativecommons.org/licenses/by-sa/3.0/
    # it allows to properly test for transparency, TOP-LEFT offsets, and
    # disposal modes.

    path = tmpdir / f"{name}.gif"
    if name == "earth":
        if IN_OSS_CI:
            # TODO: Fix this... one day.
            pytest.skip("Skipping 'earth' test as it's flaky on OSS CI")
        url = "https://upload.wikimedia.org/wikipedia/commons/2/2c/Rotating_earth_%28large%29.gif"
    else:
        url = f"https://sourceforge.net/p/giflib/code/ci/master/tree/pic/{name}.gif?format=raw"
    with open(path, "wb") as f:
        f.write(requests.get(url).content)
775

limm's avatar
limm committed
776
777
778
779
780
    encoded_bytes = read_file(path)
    f = torch.jit.script(decode_gif) if scripted else decode_gif
    tv_out = f(encoded_bytes)
    if tv_out.ndim == 3:
        tv_out = tv_out[None]
781

limm's avatar
limm committed
782
    assert tv_out.is_contiguous(memory_format=torch.channels_last)
783

limm's avatar
limm committed
784
785
786
    # For some reason, not using Image.open() as a CM causes "ResourceWarning: unclosed file"
    with Image.open(path) as pil_img:
        pil_seq = ImageSequence.Iterator(pil_img)
787

limm's avatar
limm committed
788
789
790
        for pil_frame, tv_frame in zip(pil_seq, tv_out):
            pil_frame = F.pil_to_tensor(pil_frame.convert("RGB"))
            torch.testing.assert_close(tv_frame, pil_frame, atol=0, rtol=0)
791
792


limm's avatar
limm committed
793
794
795
796
797
798
799
800
801
802
def test_decode_gif_errors():
    encoded_data = torch.randint(0, 256, (100,), dtype=torch.uint8)
    with pytest.raises(RuntimeError, match="Input tensor must be 1-dimensional"):
        decode_gif(encoded_data[None])
    with pytest.raises(RuntimeError, match="Input tensor must have uint8 data type"):
        decode_gif(encoded_data.float())
    with pytest.raises(RuntimeError, match="Input tensor must be contiguous"):
        decode_gif(encoded_data[::2])
    with pytest.raises(RuntimeError, match=re.escape("DGifOpenFileName() failed - 103")):
        decode_gif(encoded_data)
803
804


limm's avatar
limm committed
805
806
if __name__ == "__main__":
    pytest.main([__file__])