presets.py 3.79 KB
Newer Older
limm's avatar
limm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import torch
from torchvision.transforms.functional import InterpolationMode


def get_module(use_v2):
    # We need a protected import to avoid the V2 warning in case just V1 is used
    if use_v2:
        import torchvision.transforms.v2

        return torchvision.transforms.v2
    else:
        import torchvision.transforms

        return torchvision.transforms
15
16
17


class ClassificationPresetTrain:
limm's avatar
limm committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    # Note: this transform assumes that the input to forward() are always PIL
    # images, regardless of the backend parameter. We may change that in the
    # future though, if we change the output type from the dataset.
    def __init__(
        self,
        *,
        crop_size,
        mean=(0.485, 0.456, 0.406),
        std=(0.229, 0.224, 0.225),
        interpolation=InterpolationMode.BILINEAR,
        hflip_prob=0.5,
        auto_augment_policy=None,
        ra_magnitude=9,
        augmix_severity=3,
        random_erase_prob=0.0,
        backend="pil",
        use_v2=False,
    ):
        T = get_module(use_v2)

        transforms = []
        backend = backend.lower()
        if backend == "tensor":
            transforms.append(T.PILToTensor())
        elif backend != "pil":
            raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}")

        transforms.append(T.RandomResizedCrop(crop_size, interpolation=interpolation, antialias=True))
46
        if hflip_prob > 0:
limm's avatar
limm committed
47
            transforms.append(T.RandomHorizontalFlip(hflip_prob))
48
        if auto_augment_policy is not None:
limm's avatar
limm committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
            if auto_augment_policy == "ra":
                transforms.append(T.RandAugment(interpolation=interpolation, magnitude=ra_magnitude))
            elif auto_augment_policy == "ta_wide":
                transforms.append(T.TrivialAugmentWide(interpolation=interpolation))
            elif auto_augment_policy == "augmix":
                transforms.append(T.AugMix(interpolation=interpolation, severity=augmix_severity))
            else:
                aa_policy = T.AutoAugmentPolicy(auto_augment_policy)
                transforms.append(T.AutoAugment(policy=aa_policy, interpolation=interpolation))

        if backend == "pil":
            transforms.append(T.PILToTensor())

        transforms.extend(
            [
                T.ToDtype(torch.float, scale=True) if use_v2 else T.ConvertImageDtype(torch.float),
                T.Normalize(mean=mean, std=std),
            ]
        )
68
        if random_erase_prob > 0:
limm's avatar
limm committed
69
70
71
72
            transforms.append(T.RandomErasing(p=random_erase_prob))

        if use_v2:
            transforms.append(T.ToPureTensor())
73

limm's avatar
limm committed
74
        self.transforms = T.Compose(transforms)
75
76
77
78
79
80

    def __call__(self, img):
        return self.transforms(img)


class ClassificationPresetEval:
limm's avatar
limm committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    def __init__(
        self,
        *,
        crop_size,
        resize_size=256,
        mean=(0.485, 0.456, 0.406),
        std=(0.229, 0.224, 0.225),
        interpolation=InterpolationMode.BILINEAR,
        backend="pil",
        use_v2=False,
    ):
        T = get_module(use_v2)
        transforms = []
        backend = backend.lower()
        if backend == "tensor":
            transforms.append(T.PILToTensor())
        elif backend != "pil":
            raise ValueError(f"backend can be 'tensor' or 'pil', but got {backend}")

        transforms += [
            T.Resize(resize_size, interpolation=interpolation, antialias=True),
            T.CenterCrop(crop_size),
        ]

        if backend == "pil":
            transforms.append(T.PILToTensor())

        transforms += [
            T.ToDtype(torch.float, scale=True) if use_v2 else T.ConvertImageDtype(torch.float),
            T.Normalize(mean=mean, std=std),
        ]

        if use_v2:
            transforms.append(T.ToPureTensor())

        self.transforms = T.Compose(transforms)
117
118
119

    def __call__(self, img):
        return self.transforms(img)