hubconf.py 2.49 KB
Newer Older
Ailing's avatar
Ailing committed
1
# Optional list of dependencies required by the package
limm's avatar
limm committed
2
dependencies = ["torch"]
Ailing's avatar
Ailing committed
3

limm's avatar
limm committed
4
from torchvision.models import get_model_weights, get_weight
Ailing's avatar
Ailing committed
5
from torchvision.models.alexnet import alexnet
limm's avatar
limm committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from torchvision.models.convnext import convnext_base, convnext_large, convnext_small, convnext_tiny
from torchvision.models.densenet import densenet121, densenet161, densenet169, densenet201
from torchvision.models.efficientnet import (
    efficientnet_b0,
    efficientnet_b1,
    efficientnet_b2,
    efficientnet_b3,
    efficientnet_b4,
    efficientnet_b5,
    efficientnet_b6,
    efficientnet_b7,
    efficientnet_v2_l,
    efficientnet_v2_m,
    efficientnet_v2_s,
)
Ailing's avatar
Ailing committed
21
from torchvision.models.googlenet import googlenet
limm's avatar
limm committed
22
23
24
from torchvision.models.inception import inception_v3
from torchvision.models.maxvit import maxvit_t
from torchvision.models.mnasnet import mnasnet0_5, mnasnet0_75, mnasnet1_0, mnasnet1_3
25
26
from torchvision.models.mobilenetv2 import mobilenet_v2
from torchvision.models.mobilenetv3 import mobilenet_v3_large, mobilenet_v3_small
limm's avatar
limm committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from torchvision.models.optical_flow import raft_large, raft_small
from torchvision.models.regnet import (
    regnet_x_16gf,
    regnet_x_1_6gf,
    regnet_x_32gf,
    regnet_x_3_2gf,
    regnet_x_400mf,
    regnet_x_800mf,
    regnet_x_8gf,
    regnet_y_128gf,
    regnet_y_16gf,
    regnet_y_1_6gf,
    regnet_y_32gf,
    regnet_y_3_2gf,
    regnet_y_400mf,
    regnet_y_800mf,
    regnet_y_8gf,
)
from torchvision.models.resnet import (
    resnet101,
    resnet152,
    resnet18,
    resnet34,
    resnet50,
    resnext101_32x8d,
    resnext101_64x4d,
    resnext50_32x4d,
    wide_resnet101_2,
    wide_resnet50_2,
)
from torchvision.models.segmentation import (
    deeplabv3_mobilenet_v3_large,
    deeplabv3_resnet101,
    deeplabv3_resnet50,
    fcn_resnet101,
    fcn_resnet50,
    lraspp_mobilenet_v3_large,
)
from torchvision.models.shufflenetv2 import (
    shufflenet_v2_x0_5,
    shufflenet_v2_x1_0,
    shufflenet_v2_x1_5,
    shufflenet_v2_x2_0,
)
from torchvision.models.squeezenet import squeezenet1_0, squeezenet1_1
from torchvision.models.swin_transformer import swin_b, swin_s, swin_t, swin_v2_b, swin_v2_s, swin_v2_t
from torchvision.models.vgg import vgg11, vgg11_bn, vgg13, vgg13_bn, vgg16, vgg16_bn, vgg19, vgg19_bn
from torchvision.models.video import (
    mc3_18,
    mvit_v1_b,
    mvit_v2_s,
    r2plus1d_18,
    r3d_18,
    s3d,
    swin3d_b,
    swin3d_s,
    swin3d_t,
)
from torchvision.models.vision_transformer import vit_b_16, vit_b_32, vit_h_14, vit_l_16, vit_l_32