"vscode:/vscode.git/clone" did not exist on "db4238af5b52fb1d75e8cfe6a83824de295bc560"
train.py 8.49 KB
Newer Older
flauted's avatar
flauted committed
1
2
3
4
5
6
7
r"""PyTorch Detection Training.

To run in a multi-gpu environment, use the distributed launcher::

    python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
        train.py ... --world-size $NGPU

8
9
10
The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
    --lr 0.02 --batch-size 2 --world-size 8
If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
11
12
13
14
15
16
17
18

On top of that, for training Faster/Mask R-CNN, the default hyperparameters are
    --epochs 26 --lr-steps 16 22 --aspect-ratio-group-factor 3

Also, if you train Keypoint R-CNN, the default hyperparameters are
    --epochs 46 --lr-steps 36 43 --aspect-ratio-group-factor 3
Because the number of images is smaller in the person keypoint subset of COCO,
the number of epochs should be adapted so that we have the same number of iterations.
flauted's avatar
flauted committed
19
"""
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import datetime
import os
import time

import torch
import torch.utils.data
import torchvision
import torchvision.models.detection
import torchvision.models.detection.mask_rcnn

from coco_utils import get_coco, get_coco_kp

from group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
from engine import train_one_epoch, evaluate

import utils
import transforms as T


flauted's avatar
flauted committed
39
def get_dataset(name, image_set, transform, data_path):
40
    paths = {
flauted's avatar
flauted committed
41
42
        "coco": (data_path, get_coco, 91),
        "coco_kp": (data_path, get_coco_kp, 2)
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    }
    p, ds_fn, num_classes = paths[name]

    ds = ds_fn(p, image_set=image_set, transforms=transform)
    return ds, num_classes


def get_transform(train):
    transforms = []
    transforms.append(T.ToTensor())
    if train:
        transforms.append(T.RandomHorizontalFlip(0.5))
    return T.Compose(transforms)


def main(args):
    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

    # Data loading code
    print("Loading data")

flauted's avatar
flauted committed
67
68
    dataset, num_classes = get_dataset(args.dataset, "train", get_transform(train=True), args.data_path)
    dataset_test, _ = get_dataset(args.dataset, "val", get_transform(train=False), args.data_path)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

    print("Creating data loaders")
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
        test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    if args.aspect_ratio_group_factor >= 0:
        group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
        train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
    else:
        train_batch_sampler = torch.utils.data.BatchSampler(
            train_sampler, args.batch_size, drop_last=True)

    data_loader = torch.utils.data.DataLoader(
        dataset, batch_sampler=train_batch_sampler, num_workers=args.workers,
        collate_fn=utils.collate_fn)

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test, batch_size=1,
        sampler=test_sampler, num_workers=args.workers,
        collate_fn=utils.collate_fn)

    print("Creating model")
95
96
97
    kwargs = {
        "trainable_backbone_layers": args.trainable_backbone_layers
    }
98
    if "rcnn" in args.model:
99
100
        if args.rpn_score_thresh is not None:
            kwargs["rpn_score_thresh"] = args.rpn_score_thresh
101
102
    model = torchvision.models.detection.__dict__[args.model](num_classes=num_classes, pretrained=args.pretrained,
                                                              **kwargs)
103
104
105
106
107
108
109
110
111
112
113
114
115
    model.to(device)

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        model_without_ddp = model.module

    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = torch.optim.SGD(
        params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)

    # lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
    lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
Francisco Massa's avatar
Francisco Massa committed
116

117
118
119
120
121
    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
MultiK's avatar
MultiK committed
122
        args.start_epoch = checkpoint['epoch'] + 1
Francisco Massa's avatar
Francisco Massa committed
123

124
125
126
127
128
129
    if args.test_only:
        evaluate(model, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
MultiK's avatar
MultiK committed
130
    for epoch in range(args.start_epoch, args.epochs):
131
132
133
134
135
136
137
138
139
        if args.distributed:
            train_sampler.set_epoch(epoch)
        train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq)
        lr_scheduler.step()
        if args.output_dir:
            utils.save_on_master({
                'model': model_without_ddp.state_dict(),
                'optimizer': optimizer.state_dict(),
                'lr_scheduler': lr_scheduler.state_dict(),
MultiK's avatar
MultiK committed
140
141
                'args': args,
                'epoch': epoch},
142
143
144
145
146
147
148
149
150
151
152
153
                os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))

        # evaluate after every epoch
        evaluate(model, data_loader_test, device=device)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))


if __name__ == "__main__":
    import argparse
flauted's avatar
flauted committed
154
155
    parser = argparse.ArgumentParser(
        description=__doc__)
156
157
158
159
160

    parser.add_argument('--data-path', default='/datasets01/COCO/022719/', help='dataset')
    parser.add_argument('--dataset', default='coco', help='dataset')
    parser.add_argument('--model', default='maskrcnn_resnet50_fpn', help='model')
    parser.add_argument('--device', default='cuda', help='device')
161
162
    parser.add_argument('-b', '--batch-size', default=2, type=int,
                        help='images per gpu, the total batch size is $NGPU x batch_size')
163
    parser.add_argument('--epochs', default=26, type=int, metavar='N',
164
165
                        help='number of total epochs to run')
    parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
166
                        help='number of data loading workers (default: 4)')
167
168
169
    parser.add_argument('--lr', default=0.02, type=float,
                        help='initial learning rate, 0.02 is the default value for training '
                        'on 8 gpus and 2 images_per_gpu')
170
171
172
173
174
175
    parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
                        help='momentum')
    parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
                        metavar='W', help='weight decay (default: 1e-4)',
                        dest='weight_decay')
    parser.add_argument('--lr-step-size', default=8, type=int, help='decrease lr every step-size epochs')
176
    parser.add_argument('--lr-steps', default=[16, 22], nargs='+', type=int, help='decrease lr every step-size epochs')
177
178
179
180
    parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma')
    parser.add_argument('--print-freq', default=20, type=int, help='print frequency')
    parser.add_argument('--output-dir', default='.', help='path where to save')
    parser.add_argument('--resume', default='', help='resume from checkpoint')
MultiK's avatar
MultiK committed
181
    parser.add_argument('--start_epoch', default=0, type=int, help='start epoch')
182
    parser.add_argument('--aspect-ratio-group-factor', default=3, type=int)
183
184
185
    parser.add_argument('--rpn-score-thresh', default=None, type=float, help='rpn score threshold for faster-rcnn')
    parser.add_argument('--trainable-backbone-layers', default=None, type=int,
                        help='number of trainable layers of backbone')
186
187
188
189
190
191
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )
192
193
194
195
196
197
    parser.add_argument(
        "--pretrained",
        dest="pretrained",
        help="Use pre-trained models from the modelzoo",
        action="store_true",
    )
198
199
200
201
202
203
204
205
206
207
208
209

    # distributed training parameters
    parser.add_argument('--world-size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')

    args = parser.parse_args()

    if args.output_dir:
        utils.mkdir(args.output_dir)

    main(args)