test_datapoints.py 5.52 KB
Newer Older
1
2
from copy import deepcopy

3
4
import pytest
import torch
5
from common_utils import assert_equal
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from PIL import Image

from torchvision import datapoints


@pytest.mark.parametrize("data", [torch.rand(3, 32, 32), Image.new("RGB", (32, 32), color=123)])
def test_image_instance(data):
    image = datapoints.Image(data)
    assert isinstance(image, torch.Tensor)
    assert image.ndim == 3 and image.shape[0] == 3


@pytest.mark.parametrize("data", [torch.randint(0, 10, size=(1, 32, 32)), Image.new("L", (32, 32), color=2)])
def test_mask_instance(data):
    mask = datapoints.Mask(data)
    assert isinstance(mask, torch.Tensor)
    assert mask.ndim == 3 and mask.shape[0] == 1


@pytest.mark.parametrize("data", [torch.randint(0, 32, size=(5, 4)), [[0, 0, 5, 5], [2, 2, 7, 7]]])
@pytest.mark.parametrize(
    "format", ["XYXY", "CXCYWH", datapoints.BoundingBoxFormat.XYXY, datapoints.BoundingBoxFormat.XYWH]
)
def test_bbox_instance(data, format):
30
    bboxes = datapoints.BoundingBoxes(data, format=format, spatial_size=(32, 32))
31
32
33
    assert isinstance(bboxes, torch.Tensor)
    assert bboxes.ndim == 2 and bboxes.shape[1] == 4
    if isinstance(format, str):
34
        format = datapoints.BoundingBoxFormat[(format.upper())]
35
    assert bboxes.format == format
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166


@pytest.mark.parametrize(
    ("data", "input_requires_grad", "expected_requires_grad"),
    [
        ([[[0.0, 1.0], [0.0, 1.0]]], None, False),
        ([[[0.0, 1.0], [0.0, 1.0]]], False, False),
        ([[[0.0, 1.0], [0.0, 1.0]]], True, True),
        (torch.rand(3, 16, 16, requires_grad=False), None, False),
        (torch.rand(3, 16, 16, requires_grad=False), False, False),
        (torch.rand(3, 16, 16, requires_grad=False), True, True),
        (torch.rand(3, 16, 16, requires_grad=True), None, True),
        (torch.rand(3, 16, 16, requires_grad=True), False, False),
        (torch.rand(3, 16, 16, requires_grad=True), True, True),
    ],
)
def test_new_requires_grad(data, input_requires_grad, expected_requires_grad):
    datapoint = datapoints.Image(data, requires_grad=input_requires_grad)
    assert datapoint.requires_grad is expected_requires_grad


def test_isinstance():
    assert isinstance(datapoints.Image(torch.rand(3, 16, 16)), torch.Tensor)


def test_wrapping_no_copy():
    tensor = torch.rand(3, 16, 16)
    image = datapoints.Image(tensor)

    assert image.data_ptr() == tensor.data_ptr()


def test_to_wrapping():
    image = datapoints.Image(torch.rand(3, 16, 16))

    image_to = image.to(torch.float64)

    assert type(image_to) is datapoints.Image
    assert image_to.dtype is torch.float64


def test_to_datapoint_reference():
    tensor = torch.rand((3, 16, 16), dtype=torch.float64)
    image = datapoints.Image(tensor)

    tensor_to = tensor.to(image)

    assert type(tensor_to) is torch.Tensor
    assert tensor_to.dtype is torch.float64


def test_clone_wrapping():
    image = datapoints.Image(torch.rand(3, 16, 16))

    image_clone = image.clone()

    assert type(image_clone) is datapoints.Image
    assert image_clone.data_ptr() != image.data_ptr()


def test_requires_grad__wrapping():
    image = datapoints.Image(torch.rand(3, 16, 16))

    assert not image.requires_grad

    image_requires_grad = image.requires_grad_(True)

    assert type(image_requires_grad) is datapoints.Image
    assert image.requires_grad
    assert image_requires_grad.requires_grad


def test_detach_wrapping():
    image = datapoints.Image(torch.rand(3, 16, 16), requires_grad=True)

    image_detached = image.detach()

    assert type(image_detached) is datapoints.Image


def test_other_op_no_wrapping():
    image = datapoints.Image(torch.rand(3, 16, 16))

    # any operation besides the ones listed in `Datapoint._NO_WRAPPING_EXCEPTIONS` will do here
    output = image * 2

    assert type(output) is torch.Tensor


@pytest.mark.parametrize(
    "op",
    [
        lambda t: t.numpy(),
        lambda t: t.tolist(),
        lambda t: t.max(dim=-1),
    ],
)
def test_no_tensor_output_op_no_wrapping(op):
    image = datapoints.Image(torch.rand(3, 16, 16))

    output = op(image)

    assert type(output) is not datapoints.Image


def test_inplace_op_no_wrapping():
    image = datapoints.Image(torch.rand(3, 16, 16))

    output = image.add_(0)

    assert type(output) is torch.Tensor
    assert type(image) is datapoints.Image


def test_wrap_like():
    image = datapoints.Image(torch.rand(3, 16, 16))

    # any operation besides the ones listed in `Datapoint._NO_WRAPPING_EXCEPTIONS` will do here
    output = image * 2

    image_new = datapoints.Image.wrap_like(image, output)

    assert type(image_new) is datapoints.Image
    assert image_new.data_ptr() == output.data_ptr()


@pytest.mark.parametrize(
    "datapoint",
    [
        datapoints.Image(torch.rand(3, 16, 16)),
        datapoints.Video(torch.rand(2, 3, 16, 16)),
167
        datapoints.BoundingBoxes([0.0, 1.0, 2.0, 3.0], format=datapoints.BoundingBoxFormat.XYXY, spatial_size=(10, 10)),
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
        datapoints.Mask(torch.randint(0, 256, (16, 16), dtype=torch.uint8)),
    ],
)
@pytest.mark.parametrize("requires_grad", [False, True])
def test_deepcopy(datapoint, requires_grad):
    if requires_grad and not datapoint.dtype.is_floating_point:
        return

    datapoint.requires_grad_(requires_grad)

    datapoint_deepcopied = deepcopy(datapoint)

    assert datapoint_deepcopied is not datapoint
    assert datapoint_deepcopied.data_ptr() != datapoint.data_ptr()
    assert_equal(datapoint_deepcopied, datapoint)

    assert type(datapoint_deepcopied) is type(datapoint)
    assert datapoint_deepcopied.requires_grad is requires_grad
    assert datapoint_deepcopied.is_leaf