_deprecated.py 1.79 KB
Newer Older
1
import warnings
2
from typing import Any, Dict, Union
3

4
5
import numpy as np
import PIL.Image
6
import torch
7
from torchvision.transforms import functional as _F
8

9
10
from torchvision.transforms.v2 import Transform

11

12
class ToTensor(Transform):
13
    """[DEPRECATED] Use ``v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])`` instead.
Nicolas Hug's avatar
Nicolas Hug committed
14
15

    Convert a PIL Image or ndarray to tensor and scale the values accordingly.
16
17
18

    .. warning::
        :class:`v2.ToTensor` is deprecated and will be removed in a future release.
Nicolas Hug's avatar
Nicolas Hug committed
19
        Please use instead ``v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])``.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

    This transform does not support torchscript.


    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/main/references/segmentation
    """

38
    _transformed_types = (PIL.Image.Image, np.ndarray)
39

40
41
42
    def __init__(self) -> None:
        warnings.warn(
            "The transform `ToTensor()` is deprecated and will be removed in a future release. "
Nicolas Hug's avatar
Nicolas Hug committed
43
            "Instead, please use `v2.Compose([v2.ToImage(), v2.ToDtype(torch.float32, scale=True)])`."
44
45
46
        )
        super().__init__()

47
    def _transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: Dict[str, Any]) -> torch.Tensor:
48
        return _F.to_tensor(inpt)