test_image.py 15.8 KB
Newer Older
1
import glob
2
3
import io
import os
4
5
import sys
from pathlib import Path
6

7
import numpy as np
8
import pytest
9
import torch
10
import torchvision.transforms.functional as F
11
12
from common_utils import assert_equal, needs_cuda
from PIL import __version__ as PILLOW_VERSION, Image
13
from torchvision.io.image import (
14
15
    _read_png_16,
    decode_image,
16
    decode_jpeg,
17
    decode_png,
18
19
20
    encode_jpeg,
    encode_png,
    ImageReadMode,
21
    read_file,
22
    read_image,
23
24
25
    write_file,
    write_jpeg,
    write_png,
26
)
Francisco Massa's avatar
Francisco Massa committed
27

28
IMAGE_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
29
30
FAKEDATA_DIR = os.path.join(IMAGE_ROOT, "fakedata")
IMAGE_DIR = os.path.join(FAKEDATA_DIR, "imagefolder")
31
DAMAGED_JPEG = os.path.join(IMAGE_ROOT, "damaged_jpeg")
32
DAMAGED_PNG = os.path.join(IMAGE_ROOT, "damaged_png")
33
ENCODE_JPEG = os.path.join(IMAGE_ROOT, "encode_jpeg")
34
INTERLACED_PNG = os.path.join(IMAGE_ROOT, "interlaced_png")
35
TOOSMALL_PNG = os.path.join(IMAGE_ROOT, "toosmall_png")
36
IS_WINDOWS = sys.platform in ("win32", "cygwin")
37
IS_MACOS = sys.platform == "darwin"
38
PILLOW_VERSION = tuple(int(x) for x in PILLOW_VERSION.split("."))
39
40
41
42
43
44
45
46


def _get_safe_image_name(name):
    # Used when we need to change the pytest "id" for an "image path" parameter.
    # If we don't, the test id (i.e. its name) will contain the whole path to the image, which is machine-specific,
    # and this creates issues when the test is running in a different machine than where it was collected
    # (typically, in fb internal infra)
    return name.split(os.path.sep)[-1]
47
48
49
50


def get_images(directory, img_ext):
    assert os.path.isdir(directory)
51
    image_paths = glob.glob(directory + f"/**/*{img_ext}", recursive=True)
52
    for path in image_paths:
53
        if path.split(os.sep)[-2] not in ["damaged_jpeg", "jpeg_write"]:
54
            yield path
55
56


57
58
59
60
61
62
63
64
65
66
67
68
69
def pil_read_image(img_path):
    with Image.open(img_path) as img:
        return torch.from_numpy(np.array(img))


def normalize_dimensions(img_pil):
    if len(img_pil.shape) == 3:
        img_pil = img_pil.permute(2, 0, 1)
    else:
        img_pil = img_pil.unsqueeze(0)
    return img_pil


70
71
72
73
74
75
76
77
78
79
80
81
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")],
)
@pytest.mark.parametrize(
    "pil_mode, mode",
    [
        (None, ImageReadMode.UNCHANGED),
        ("L", ImageReadMode.GRAY),
        ("RGB", ImageReadMode.RGB),
    ],
)
82
83
84
85
86
87
88
def test_decode_jpeg(img_path, pil_mode, mode):

    with Image.open(img_path) as img:
        is_cmyk = img.mode == "CMYK"
        if pil_mode is not None:
            img = img.convert(pil_mode)
        img_pil = torch.from_numpy(np.array(img))
89
        if is_cmyk and mode == ImageReadMode.UNCHANGED:
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
            # flip the colors to match libjpeg
            img_pil = 255 - img_pil

    img_pil = normalize_dimensions(img_pil)
    data = read_file(img_path)
    img_ljpeg = decode_image(data, mode=mode)

    # Permit a small variation on pixel values to account for implementation
    # differences between Pillow and LibJPEG.
    abs_mean_diff = (img_ljpeg.type(torch.float32) - img_pil).abs().mean().item()
    assert abs_mean_diff < 2


def test_decode_jpeg_errors():
    with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
        decode_jpeg(torch.empty((100, 1), dtype=torch.uint8))

    with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
        decode_jpeg(torch.empty((100,), dtype=torch.float16))

    with pytest.raises(RuntimeError, match="Not a JPEG file"):
        decode_jpeg(torch.empty((100), dtype=torch.uint8))


def test_decode_bad_huffman_images():
    # sanity check: make sure we can decode the bad Huffman encoding
116
    bad_huff = read_file(os.path.join(DAMAGED_JPEG, "bad_huffman.jpg"))
117
118
119
    decode_jpeg(bad_huff)


120
121
122
123
124
125
126
@pytest.mark.parametrize(
    "img_path",
    [
        pytest.param(truncated_image, id=_get_safe_image_name(truncated_image))
        for truncated_image in glob.glob(os.path.join(DAMAGED_JPEG, "corrupt*.jpg"))
    ],
)
127
128
129
def test_damaged_corrupt_images(img_path):
    # Truncated images should raise an exception
    data = read_file(img_path)
130
    if "corrupt34" in img_path:
131
132
133
134
135
136
137
        match_message = "Image is incomplete or truncated"
    else:
        match_message = "Unsupported marker type"
    with pytest.raises(RuntimeError, match=match_message):
        decode_jpeg(data)


138
139
140
141
142
143
144
145
146
147
148
149
150
151
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(FAKEDATA_DIR, ".png")],
)
@pytest.mark.parametrize(
    "pil_mode, mode",
    [
        (None, ImageReadMode.UNCHANGED),
        ("L", ImageReadMode.GRAY),
        ("LA", ImageReadMode.GRAY_ALPHA),
        ("RGB", ImageReadMode.RGB),
        ("RGBA", ImageReadMode.RGB_ALPHA),
    ],
)
152
153
154
155
156
157
158
159
def test_decode_png(img_path, pil_mode, mode):

    with Image.open(img_path) as img:
        if pil_mode is not None:
            img = img.convert(pil_mode)
        img_pil = torch.from_numpy(np.array(img))

    img_pil = normalize_dimensions(img_pil)
160

161
    if img_path.endswith("16.png"):
162
163
164
165
166
167
168
169
170
        # 16 bits image decoding is supported, but only as a private API
        # FIXME: see https://github.com/pytorch/vision/issues/4731 for potential solutions to making it public
        with pytest.raises(RuntimeError, match="At most 8-bit PNG images are supported"):
            data = read_file(img_path)
            img_lpng = decode_image(data, mode=mode)

        img_lpng = _read_png_16(img_path, mode=mode)
        assert img_lpng.dtype == torch.int32
        # PIL converts 16 bits pngs in uint8
171
        img_lpng = torch.round(img_lpng / (2**16 - 1) * 255).to(torch.uint8)
172
173
174
    else:
        data = read_file(img_path)
        img_lpng = decode_image(data, mode=mode)
175
176

    tol = 0 if pil_mode is None else 1
177
178
179
180
181
182
183
184
185

    if PILLOW_VERSION >= (8, 3) and pil_mode == "LA":
        # Avoid checking the transparency channel until
        # https://github.com/python-pillow/Pillow/issues/5593#issuecomment-878244910
        # is fixed.
        # TODO: remove once fix is released in PIL. Should be > 8.3.1.
        img_lpng, img_pil = img_lpng[0], img_pil[0]

    torch.testing.assert_close(img_lpng, img_pil, atol=tol, rtol=0)
186
187
188
189
190
191
192


def test_decode_png_errors():
    with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
        decode_png(torch.empty((), dtype=torch.uint8))
    with pytest.raises(RuntimeError, match="Content is not png"):
        decode_png(torch.randint(3, 5, (300,), dtype=torch.uint8))
193
194
    with pytest.raises(RuntimeError, match="Out of bound read in decode_png"):
        decode_png(read_file(os.path.join(DAMAGED_PNG, "sigsegv.png")))
195
196
    with pytest.raises(RuntimeError, match="Content is too small for png"):
        decode_png(read_file(os.path.join(TOOSMALL_PNG, "heapbof.png")))
197
198


199
200
201
202
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(IMAGE_DIR, ".png")],
)
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
def test_encode_png(img_path):
    pil_image = Image.open(img_path)
    img_pil = torch.from_numpy(np.array(pil_image))
    img_pil = img_pil.permute(2, 0, 1)
    png_buf = encode_png(img_pil, compression_level=6)

    rec_img = Image.open(io.BytesIO(bytes(png_buf.tolist())))
    rec_img = torch.from_numpy(np.array(rec_img))
    rec_img = rec_img.permute(2, 0, 1)

    assert_equal(img_pil, rec_img)


def test_encode_png_errors():
    with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
        encode_png(torch.empty((3, 100, 100), dtype=torch.float32))

    with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"):
221
        encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=-1)
222
223

    with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"):
224
        encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=10)
225
226
227
228
229

    with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
        encode_png(torch.empty((5, 100, 100), dtype=torch.uint8))


230
231
232
233
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(IMAGE_DIR, ".png")],
)
234
235
236
237
def test_write_png(img_path, tmpdir):
    pil_image = Image.open(img_path)
    img_pil = torch.from_numpy(np.array(pil_image))
    img_pil = img_pil.permute(2, 0, 1)
238

239
    filename, _ = os.path.splitext(os.path.basename(img_path))
240
    torch_png = os.path.join(tmpdir, f"{filename}_torch.png")
241
242
243
    write_png(img_pil, torch_png, compression_level=6)
    saved_image = torch.from_numpy(np.array(Image.open(torch_png)))
    saved_image = saved_image.permute(2, 0, 1)
244

245
    assert_equal(img_pil, saved_image)
246
247


248
def test_read_file(tmpdir):
249
    fname, content = "test1.bin", b"TorchVision\211\n"
250
    fpath = os.path.join(tmpdir, fname)
251
    with open(fpath, "wb") as f:
252
        f.write(content)
253

254
255
256
257
    data = read_file(fpath)
    expected = torch.tensor(list(content), dtype=torch.uint8)
    os.unlink(fpath)
    assert_equal(data, expected)
258
259

    with pytest.raises(RuntimeError, match="No such file or directory: 'tst'"):
260
        read_file("tst")
261
262


263
def test_read_file_non_ascii(tmpdir):
264
    fname, content = "日本語(Japanese).bin", b"TorchVision\211\n"
265
    fpath = os.path.join(tmpdir, fname)
266
    with open(fpath, "wb") as f:
267
        f.write(content)
268

269
270
271
272
    data = read_file(fpath)
    expected = torch.tensor(list(content), dtype=torch.uint8)
    os.unlink(fpath)
    assert_equal(data, expected)
273
274


275
def test_write_file(tmpdir):
276
    fname, content = "test1.bin", b"TorchVision\211\n"
277
278
279
    fpath = os.path.join(tmpdir, fname)
    content_tensor = torch.tensor(list(content), dtype=torch.uint8)
    write_file(fpath, content_tensor)
280

281
    with open(fpath, "rb") as f:
282
283
284
        saved_content = f.read()
    os.unlink(fpath)
    assert content == saved_content
285
286


287
def test_write_file_non_ascii(tmpdir):
288
    fname, content = "日本語(Japanese).bin", b"TorchVision\211\n"
289
290
291
    fpath = os.path.join(tmpdir, fname)
    content_tensor = torch.tensor(list(content), dtype=torch.uint8)
    write_file(fpath, content_tensor)
292

293
    with open(fpath, "rb") as f:
294
295
296
        saved_content = f.read()
    os.unlink(fpath)
    assert content == saved_content
297

298

299
300
301
302
303
304
305
306
@pytest.mark.parametrize(
    "shape",
    [
        (27, 27),
        (60, 60),
        (105, 105),
    ],
)
307
def test_read_1_bit_png(shape, tmpdir):
308
    np_rng = np.random.RandomState(0)
309
    image_path = os.path.join(tmpdir, f"test_{shape}.png")
310
311
312
313
314
315
    pixels = np_rng.rand(*shape) > 0.5
    img = Image.fromarray(pixels)
    img.save(image_path)
    img1 = read_image(image_path)
    img2 = normalize_dimensions(torch.as_tensor(pixels * 255, dtype=torch.uint8))
    assert_equal(img1, img2)
Prabhat Roy's avatar
Prabhat Roy committed
316
317


318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
@pytest.mark.parametrize(
    "shape",
    [
        (27, 27),
        (60, 60),
        (105, 105),
    ],
)
@pytest.mark.parametrize(
    "mode",
    [
        ImageReadMode.UNCHANGED,
        ImageReadMode.GRAY,
    ],
)
333
def test_read_1_bit_png_consistency(shape, mode, tmpdir):
334
    np_rng = np.random.RandomState(0)
335
    image_path = os.path.join(tmpdir, f"test_{shape}.png")
336
337
338
339
340
341
    pixels = np_rng.rand(*shape) > 0.5
    img = Image.fromarray(pixels)
    img.save(image_path)
    img1 = read_image(image_path, mode)
    img2 = read_image(image_path, mode)
    assert_equal(img1, img2)
Prabhat Roy's avatar
Prabhat Roy committed
342
343


344
345
346
347
348
349
350
351
352
def test_read_interlaced_png():
    imgs = list(get_images(INTERLACED_PNG, ".png"))
    with Image.open(imgs[0]) as im1, Image.open(imgs[1]) as im2:
        assert not (im1.info.get("interlace") is im2.info.get("interlace"))
    img1 = read_image(imgs[0])
    img2 = read_image(imgs[1])
    assert_equal(img1, img2)


353
@needs_cuda
354
355
356
357
358
359
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")],
)
@pytest.mark.parametrize("mode", [ImageReadMode.UNCHANGED, ImageReadMode.GRAY, ImageReadMode.RGB])
@pytest.mark.parametrize("scripted", (False, True))
360
def test_decode_jpeg_cuda(mode, img_path, scripted):
361
    if "cmyk" in img_path:
362
        pytest.xfail("Decoding a CMYK jpeg isn't supported")
363

364
365
366
    data = read_file(img_path)
    img = decode_image(data, mode=mode)
    f = torch.jit.script(decode_jpeg) if scripted else decode_jpeg
367
    img_nvjpeg = f(data, mode=mode, device="cuda")
368
369

    # Some difference expected between jpeg implementations
370
    assert (img.float() - img_nvjpeg.cpu().float()).abs().mean() < 2
371

Nicolas Hug's avatar
Nicolas Hug committed
372

373
374
375
376
377
378
@needs_cuda
def test_decode_image_cuda_raises():
    data = torch.randint(0, 127, size=(255,), device="cuda", dtype=torch.uint8)
    with pytest.raises(RuntimeError):
        decode_image(data)

379
380

@needs_cuda
381
@pytest.mark.parametrize("cuda_device", ("cuda", "cuda:0", torch.device("cuda")))
382
383
def test_decode_jpeg_cuda_device_param(cuda_device):
    """Make sure we can pass a string or a torch.device as device param"""
384
    path = next(path for path in get_images(IMAGE_ROOT, ".jpg") if "cmyk" not in path)
385
    data = read_file(path)
386
387
388
389
390
391
392
    decode_jpeg(data, device=cuda_device)


@needs_cuda
def test_decode_jpeg_cuda_errors():
    data = read_file(next(get_images(IMAGE_ROOT, ".jpg")))
    with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
393
        decode_jpeg(data.reshape(-1, 1), device="cuda")
394
    with pytest.raises(RuntimeError, match="input tensor must be on CPU"):
395
        decode_jpeg(data.to("cuda"), device="cuda")
396
    with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
397
        decode_jpeg(data.to(torch.float), device="cuda")
398
    with pytest.raises(RuntimeError, match="Expected a cuda device"):
399
        torch.ops.image.decode_jpeg_cuda(data, ImageReadMode.UNCHANGED.value, "cpu")
400
401


402
403
404
405
406
def test_encode_jpeg_errors():

    with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
        encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32))

407
    with pytest.raises(ValueError, match="Image quality should be a positive number between 1 and 100"):
408
409
        encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=-1)

410
    with pytest.raises(ValueError, match="Image quality should be a positive number between 1 and 100"):
411
412
413
414
415
416
417
418
419
420
421
422
        encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=101)

    with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
        encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8))

    with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
        encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8))

    with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
        encode_jpeg(torch.empty((100, 100), dtype=torch.uint8))


423
@pytest.mark.skipif(IS_MACOS, reason="https://github.com/pytorch/vision/issues/8031")
424
425
426
427
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
428
429
430
431
432
def test_encode_jpeg(img_path):
    img = read_image(img_path)

    pil_img = F.to_pil_image(img)
    buf = io.BytesIO()
433
    pil_img.save(buf, format="JPEG", quality=75)
434

435
    encoded_jpeg_pil = torch.frombuffer(buf.getvalue(), dtype=torch.uint8)
436
437
438
439
440
441

    for src_img in [img, img.contiguous()]:
        encoded_jpeg_torch = encode_jpeg(src_img, quality=75)
        assert_equal(encoded_jpeg_torch, encoded_jpeg_pil)


442
@pytest.mark.skipif(IS_MACOS, reason="https://github.com/pytorch/vision/issues/8031")
443
444
445
446
@pytest.mark.parametrize(
    "img_path",
    [pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
447
448
449
450
def test_write_jpeg(img_path, tmpdir):
    tmpdir = Path(tmpdir)
    img = read_image(img_path)
    pil_img = F.to_pil_image(img)
451

452
453
    torch_jpeg = str(tmpdir / "torch.jpg")
    pil_jpeg = str(tmpdir / "pil.jpg")
454

455
456
    write_jpeg(img, torch_jpeg, quality=75)
    pil_img.save(pil_jpeg, quality=75)
457

458
    with open(torch_jpeg, "rb") as f:
459
        torch_bytes = f.read()
460

461
    with open(pil_jpeg, "rb") as f:
462
        pil_bytes = f.read()
463

464
    assert_equal(torch_bytes, pil_bytes)
465
466


467
468
if __name__ == "__main__":
    pytest.main([__file__])